RFSS Lecture 1: Introduction Part 1

- **Readings:**
 - Chart of the nuclides
 → Class handout
 - Table of the isotopes
 - Modern Nuclear Chemistry: Chapter 1
 → http://radchem.nevada.edu/docs/course%20reading/Nuc%20&%20Radchem%203rd%20Ed%20Friedlander.pdf

- Class organization
- Outcomes
- Grading
- Resources
 - Chart of the nuclides book (bring to class everyday!)
 - Electronic resources
 → Web pages, pdfs, apps, programs, blog

- History of radiation research
- Chart of the nuclides and Table of the isotopes
 - Description and use
 - Data

- Radiochemistry introduction
 - Atomic properties
 - Nuclear nomenclature
 - X-rays
 - Types of decays
 - Forces (limit of course instruction)
Introduction

• Course designed to increase potential pool of researchers for the nuclear fuel cycle
 ▪ Nuclear fuel
 ▪ Separations
 ▪ Waste forms
 ▪ Nuclear forensics and the fuel cycle
 ▪ Safeguards
 ▪ Nuclear reactors
• Course will emphasize the role of radiochemistry in the nuclear fuel cycle
• Interest students in radiochemistry
 ▪ Provide route to radiochemistry research
 → Graduate research in radiochemistry
Course overview

• Radiochemistry includes physics of radioactive decay and chemistry of radioisotopes
 ▪ Intellectual intersection of the periodic table and chart of the nuclides
 → Emphasis on elements with only radioactive isotopes
 * Tc, actinides

• Course topics
 ▪ Chart of the nuclides
 ▪ Details on alpha decay, beta decay, gamma decay, and fission
 ▪ Methods and data from the investigation of nuclear properties
 ▪ Fundamental chemical properties in radiation and radiochemistry
 ▪ Radioisotope production and
 ▪ Radiochemistry in research and technology

• Textbooks and published literature are used a reading material
 ▪ Available as PDFs
 → Linked to web page

• Input from students valued
 ▪ Expect participation and assistance with course development
 ▪ Output should enhance on-line course
Outcomes

1. Understand, utilize, and apply the chart of the nuclides and table of the isotopes to radiochemistry and nuclear technology
 - Bring chart of nuclide to class
 - Understand chart of the nuclide structure
 - Access and utilize presented data
 - Use Table of the Isotopes

2. Understand the fundamentals of nuclear structure
 - Why do nuclei have shapes other than spherical
 - Relationship between shape and behavior

3. Understand chemical properties of radioelements
 - Focus on actinides
 - Filling of 5f electron orbitals
 - Technetium, promethium
 - Radioelements Z<83
Outcomes

4. Comprehend and evaluate nuclear reactions and the production of isotopes
 - Use chart of the nuclides
 → Cross section data
 - Reaction particles
 → Neutrons, alpha, ions, photons
 - Reaction energies
 → Mass differences

5. Comprehend types and descriptions of radioactive decay
 - Expected decay based on location of isotope in chart of the nuclides
 - Decay modes relationship with half-life
Outcomes

6. Utilization of radiochemistry in research
 - Evaluation of concentration
 - Behavior of radioelements
 - Exploitation of isotopes

7. Investigate modern topics relating radiochemistry to the nuclear fuel cycle
 - Research basis in laboratory
 - Literature review
 - Presentation of results
Grading: Lecture course

• Pop-quizzes at end of lecture (20 %)
 ▪ Based upon presented information
 ▪ PDF form submission

• Five comprehensive quizzes (15 % each)
 ▪ Based on topic covered in lecture and pop quizzes
 ▪ Take home and submitted on PDF
 → Work material submitted separately in electronic format
 ▪ Goal of quizzes is demonstrating material comprehension
 ▪ Quizzes will be iterated after submission
 → Students will have opportunity to correct answers
 → 1st due date for all quizzes
 → answers posted after 1st due date
 → Opportunity to resubmit changes after posting of answers

• Participation (5 %)
Grading: Fuel Cycle Laboratory

- 3 groups for initial laboratories
- Write up for 3 laboratories (10% each)
 - Radiation Safety
 - Alpha and Gamma spectroscopy
 - Oxide pellet synthesis
 - U solvent extraction
 → One report from each group
- Report on research (35%)
 - Publication manuscript form
- Presentation of research (35%)
 - 15 minute presentation at end of course
- Research requires plan of the week
 - Radchem.nevada.edu
Laboratory Modules

• Radiation safety, laboratory walkthrough
 ▪ 1st module taken by all students
 ➔ Orientation of laboratory

• Alpha and gamma spectroscopy
 ▪ Inverse square law
 ▪ Isotopes
 ▪ Decay energy branching
 ▪ Calibration
 ▪ Measuring samples
Laboratory Modules

- Radiochemical separations
 - Solvent extraction with tributylphosphate
 - UV-Visible spectroscopy of U
 - Determination of distribution coefficient
- Formation of oxide ceramics
 - Precipitation from salts
 - ZrO$_2$
 - Basis for formation of nuclear fuel
- Focus on concepts useful for the nuclear fuel cycle
Grading: Laboratory

- Reports format from manuscript preparation
 - Abstract
 - Introduction
 -> Background
 -> Why is the research performed
 - Experimental
 -> Methods
 -> Equipment
 - Results and discussion
 -> What was observed, what does it mean
 - Conclusion
 -> Restatement of main discussion points
 -> Answers question posed in introduction
<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Monday 15 June</td>
<td>Using the online lectures and PDF quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEB 2251 at 0800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0800-0830 Bagels and Coffee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0830-0845 Summer school orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0845-1000 Chart of the Nuclides Lecture (Prof. Czerwinski)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000-1200 Chemical Hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200-1300 Lunch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300-1700: Unsealed Sources Training (1st floor HRC)</td>
</tr>
<tr>
<td>1</td>
<td>Tuesday 16 June</td>
<td>Online Lectures: Nuclear Properties, Decay Kinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1030: Group Photo (Baepler Xeriscape Garden)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100-1230 Radworker II Training (1st floor HRC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1230-1300 Lunch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300-1700 Radworker II Dressout and Laboratory Orientation(1st floor HRC)</td>
</tr>
<tr>
<td>2</td>
<td>Wednesday 17 June</td>
<td>Online lecture: Decay Kinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online lecture: Alpha Decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Coursework</td>
</tr>
<tr>
<td>3</td>
<td>Thursday 18 June</td>
<td>Lecture Dr. Bruce Mincher, INL: Radiolysis in the NFC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Coursework</td>
</tr>
<tr>
<td>4</td>
<td>Friday 19 June</td>
<td>Meeting: Chart of Nuclides, Nuclear properties, decay kinetics, alpha decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Coursework</td>
</tr>
<tr>
<td>5</td>
<td>Monday 22 June</td>
<td>Online lecture: Beta decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meeting: Presentation of Research Topics by Radiochemistry Researchers</td>
</tr>
<tr>
<td>6</td>
<td>Tuesday 23 June</td>
<td>Online lecture: Gamma decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online lecture: Fission</td>
</tr>
<tr>
<td>7</td>
<td>Wednesday 24 June</td>
<td>Online lecture: Nuclear Models</td>
</tr>
<tr>
<td>8</td>
<td>Thursday 25 June</td>
<td>Lecture Dr. Michael Simpson, University of Utah: Pyroprocessing in the NFC</td>
</tr>
<tr>
<td>9</td>
<td>Friday 26 June</td>
<td>Meeting: gamma decay, fission, nuclear models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz 2</td>
</tr>
<tr>
<td>10</td>
<td>Monday 29 June</td>
<td>Tour University of California Irvine: Nuclear Reactor</td>
</tr>
<tr>
<td>11</td>
<td>Tuesday 30 June</td>
<td>Tour General Atomic, Lecture: Nuclear Forensics</td>
</tr>
<tr>
<td>12</td>
<td>Wednesday 01 July</td>
<td>Online lecture: Nuclear Reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Research on Topics of the Nuclear Fuel Cycle</td>
</tr>
<tr>
<td>13</td>
<td>Thursday 02 July</td>
<td>Online lecture: Speciation</td>
</tr>
<tr>
<td>14</td>
<td>Friday 03 July</td>
<td>Online lecture: Uranium chemistry & enrichment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture Dr. Frederic Poineau: Technetium chemistry</td>
</tr>
<tr>
<td>15</td>
<td>Monday 06 July</td>
<td>Online lecture: Neptunium chemistry</td>
</tr>
<tr>
<td>Class</td>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>Tuesday 07 July</td>
<td>Meeting: Nuclear reactions, speciation, Tc , U , Np chemistry Quiz 3</td>
</tr>
<tr>
<td>18</td>
<td>Wednesday 08 July</td>
<td>Online lecture: Plutonium chemistry</td>
</tr>
<tr>
<td>19</td>
<td>Thursday 09 July</td>
<td>Online lecture: Americium and Curium chemistry</td>
</tr>
<tr>
<td>20</td>
<td>Friday 10 July</td>
<td>Meeting: Plutonium Americium , and Curium chemistry</td>
</tr>
<tr>
<td>21</td>
<td>Monday 13 July</td>
<td>Skype Presentation Dr. James Laidler, ANL: Fast Reactors and Gas-cooled Reactors</td>
</tr>
<tr>
<td>22</td>
<td>Tuesday 14 July</td>
<td>Skype Presentation Dr. James Laidler, ANL: Fuel Design, and History of Reprocessing</td>
</tr>
<tr>
<td>23</td>
<td>Wednesday 15 July</td>
<td>Online lecture: Chemistry of reactor fuels Quiz 4</td>
</tr>
<tr>
<td>24</td>
<td>Thursday 16 July</td>
<td>Tour to the Nevada Nuclear Security Site NNSS</td>
</tr>
<tr>
<td>25</td>
<td>Friday 17 July</td>
<td>Lecture Dr. Ralf Sudowe, UNLV: Radiation interaction Meeting: Reactors, Fuel, Forensic</td>
</tr>
<tr>
<td>26</td>
<td>Monday 20 July</td>
<td>Lecture Dr. Jenifer Braley, Co School of Mines: Advanced Recycling & Nuclear Fuel Separation</td>
</tr>
<tr>
<td>27</td>
<td>Tuesday 21 July</td>
<td>Lecture Dr. Ralf Sudowe, UNLV: Detectors</td>
</tr>
<tr>
<td>28</td>
<td>Wednesday 22 July</td>
<td>Lecture Dr. Gary Cerefice, UNLV: Waste forms & repositories, UNLV, geological repositories</td>
</tr>
<tr>
<td>29</td>
<td>Thursday 23 July</td>
<td>Lecture Dr. Thomas Hartmann, UNLV: Fuels, Vitrification & waste forms Quiz 5</td>
</tr>
<tr>
<td>30</td>
<td>Friday 24 July</td>
<td>Student Presentations and Awards</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>15 Jun 0800 SEB 2251 at 0800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800-0815 Bagels and Coffee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0815-0830 Summer school orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0830-1000 Chart of the Nuclides Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1200 Chemical Hygiene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200-1300 Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300-1700: Unsealed Sources Training (1st floor HRC)</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>16 Jun Online Lectures: Nuclear Properties, Decay Kinetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1030: Group Photo (Baepler Xeriscape Garden)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100-1230 Radworker II Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1230-1300 Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300-1700 Radworker II Dressout and Laboratory Orientation</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>17 Jun Laboratory I</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>18 Jun Laboratory II</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>19 Jun Laboratory III</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>22 Jun Research presentations</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>23 Jun Discussion and project selection</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>24 Jun Literature review and research project development</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>25 Jun Laboratory reports due</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiation of research project</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>26 Jun Research, reporting, and presentation development</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>29 Jun Report and presentation development, presentation practice</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>30 Jun presentation practice and Quiz 5</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>21 Jul Presentations</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>22 Jul Report and presentation development, presentation practice</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>23 Jul presentation practice and Quiz 5</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>24 Jul Presentations</td>
<td></td>
</tr>
</tbody>
</table>
Course Resources

• Chart of the nuclides book
 ▪ Bring everyday

• Reading material and resources
 ▪ Modern Nuclear Chemistry
 ▪ Nuclear and Radiochemistry
 ▪ Table of the Isotopes
 ▪ Radiochemistry of Nuclear Power Plants with Light Water Reactors
 ▪ Technetium
 ▪ Uranium to Curium Chemistry
 → http://radchem.nevada.edu/classes/rfss/readings.html

• Course blog
 ▪ Completion of online course, homework, labs, quizzes
 ▪ http://rfssunlv.blogspot.com/
Course Resources

• National Nuclear Data Center
 ▪ Q-value calculator
 ▪ Chart of the nuclides
 ▪ Nuclear Wallet Cards

• Table of the Isotopes
 ▪ http://ie.lbl.gov/toi/

• Nuclide tool (growth and decay)

• JCHESS speciation code
 ▪ http://radchem.nevada.edu/classes/rdch702/lectures%20and%20chapters.html

• Isotope Browser app
 ▪ Host of information available at http://www.iaea.org/

• Nuclear Fuel Cycle information
 ▪ Used for DOE-Nuclear Energy project on fuel cycle options
 ▪ https://connect.sandia.gov/sites/NuclearFuelCycleOptionCatalog/SitePages/a/homepage.aspx
History of Radiation Research

- 1896 Discovery of radioactivity
 - Becquerel used K₂UO₂(SO₄)₂•H₂O exposed to sunlight and placed on photographic plates wrapped in black paper
 - Plates revealed an image of the uranium crystals when developed
- 1898 Isolation of radium and polonium
 - Marie and Pierre Curie isolated from U ore
- 1899 Radiation into alpha, beta, and gamma components, based on penetration of objects and ability to cause ionization
 - Ernest Rutherford identified alpha
- 1909 Alpha particle shown to be He nucleus
 - Charge to mass determined by Rutherford
- 1911 Nuclear atom model
 - Plum pudding by Thomson examined
 - Rutherford developed planetary model
- 1912 Development of cloud chamber by Wilson
- 1913 Planetary atomic model expanded (Bohr Model)
 - Application of quantum mechanics
- 1914 Nuclear charge determined from X rays
 - Determined by Moseley in Rutherford’s laboratory
History

• 1919 Artificial transmutation by nuclear reactions
 ▪ Rutherford bombarded ^{14}N with alpha particle to make ^{17}O
• 1919 Development of mass spectrometer
• 1928 Theory of alpha radioactivity
 ▪ Tunneling description by Gamow
• 1930 Neutrino hypothesis
 ▪ Fermi, mass less particle with $\frac{1}{2}$ spin, explains beta decay
• 1932 First cyclotron
 ▪ Lawrence at UC Berkeley
• 1932 Discovery of neutron
 ▪ Chadwick used scattering data to calculate mass, Rutherford knew A was about twice Z. Lead to proton-neutron nuclear model
• 1934 Discovery of artificial radioactivity
 ▪ Jean Frédéric Joliot & Irène Curie showed alphas on Al formed P
• 1938 Discovery of nuclear fission
 ▪ From reaction of U with neutrons, Hahn and Meitner
• 1942 First controlled fission reactor
 ▪ Chicago Pile
• 1945 First fission bomb tested
 ▪ Trinity Test
• 1947 Development of radiocarbon dating
Radioelements

<table>
<thead>
<tr>
<th>1</th>
<th>H</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>He</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Li</td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
</tr>
<tr>
<td>5</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
</tr>
<tr>
<td>6</td>
<td>Cs</td>
<td>Ba</td>
<td>La*</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
</tr>
<tr>
<td>7</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac**</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
</tr>
</tbody>
</table>

Lanthanides

| 58 Ce | 59 Pr | 60 Nd | 61 Pm | 62 Sm | 63 Eu | 64 Gd | 65 Tb | 66 Dy | 67 Ho | 68 Er | 69 Tm | 70 Yb | 71 Lu |

Actinides

| 90 Th | 91 Pa | 92 U | 93 Np | 94 Pu | 95 Am | 96 Cm | 97 Bk | 98 Cf | 99 Es | 100 Fm | 101 Md | 102 No | 103 Lr |
Technetium

- Confirmed in a December 1936 experiment at the University of Palermo
 - Carlo Perrier and Emilio Segrè.
 - Ernest Lawrence (UC Berkeley) mailed molybdenum foil from cyclotron deflector
 - Succeeded in isolating the isotopes $^{95,97}\text{Tc}$
 - Named after Greek word τεχνητός, meaning artificial
 - University of Palermo officials wanted them to name their discovery "panormium", after the Latin name for Palermo, Panormus
 - Segre and Seaborg isolate ^{99m}Tc
Promethium was first produced and characterized at ORNL in 1945 by Jacob A. Marinsky, Lawrence E. Glendenin and Charles D. Coryell.

Separation and analysis of the fission products of uranium fuel irradiated in the Graphite Reactor.

Announced discovery in 1947.

In 1963, ion-exchange methods were used at ORNL to prepare about 10 grams of Pm from used nuclear fuel.
Np synthesis

- Neptunium was the first synthetic transuranium element of the actinide series discovered
 - isotope ^{239}Np was produced by McMillan and Abelson in 1940 at Berkeley, California
 - bombarding uranium with cyclotron-produced neutrons
 $\rightarrow 238U(n,\gamma)239U$, beta decay of $239U$ to ^{239}Np ($t_{1/2}=2.36$ days)
 - Chemical properties unclear at time of discovery
 \rightarrow Actinide elements not in current location
 \rightarrow In group with W
- Chemical studies showed similar properties to U
- First evidence of 5f shell
- Macroscopic amounts
 - ^{237}Np
 $\rightarrow 238U(n,2n)237U$
 * Beta decay of ^{237}U
 \rightarrow 10 microgram
Pu synthesis

• Plutonium was the second transuranium element of the actinide series to be discovered
 ▪ The isotope ^{238}Pu was produced in 1940 by Seaborg, McMillan, Kennedy, and Wahl
 ▪ Deuteron bombardment of ^{238}U in the 60-inch cyclotron at Berkeley, California
 → $^{238}\text{U}(^{2}\text{H}, 2n)^{238}\text{Np}$
 * Beta decay of ^{238}Np to ^{238}Pu
 ▪ Oxidation of produced Pu showed chemically different
• ^{239}Pu produced in 1941
 ▪ Uranil nitrate in paraffin block behind Be target bombarded with deuterium
 ▪ Separation with fluorides and extraction with diethylether
 ▪ Eventually showed isotope undergoes slow neutron fission
Am and Cm discovery

• First produce in reactor via neutron capture
 ▪ neutron capture on ^{239}Pu
 ▪ $^{239}\text{Pu} + n \rightarrow ^{240}\text{Pu} + n \rightarrow ^{241}\text{Pu} \rightarrow ^{241}\text{Am} + \beta^-$
 ▪ Also formed ^{242}Cm

• Direct production
 ▪ ^{241}Am from ^{241}Pu produced by $^{238}\text{U} + ^4\text{He}$
 → Also directly produced from He on ^{237}Np and ^2H on ^{239}Pu
 ▪ $^{239}\text{Pu}(^4\text{He},n)^{242}\text{Cm}$
 → Chemical separation from Pu
 → Identification of ^{238}Pu daughter from alpha decay

• Difficulties in separating Am from Cm and from lanthanide fission products
 ▪ Trivalent oxidation states

• See publications announcing discovery on web page
Bk and Cf discovery

- **Required Am and Cm as targets**
 - Needed to produce these isotopes in sufficient quantities → **Milligrams**
 - Am from neutron reaction with Pu
 - Cm from neutron reaction with Am
- **Production of new elements followed by separation**
 - $^{241}\text{Am}(^{4}\text{He},2n)^{243}\text{Bk}$ → Cation exchange separation
 - $^{242}\text{Cm}(^{4}\text{He},n)^{245}\text{Cf}$ → Anion exchange
- **Where would the heavier actinides elute?**

Dowex 50 resin at 87 °C, elute with ammonium citrate
Einsteinium and Fermium

- Debris from Mike test
 - 1st thermonuclear test
 - [Video](http://www.youtube.com/watch?v=h7vyKDeS)
 - New isotopes of Pu
 - 244 and 246
 - Successive neutron capture of ^{238}U
 - Correlation of log yield versus atomic mass
 - Evidence for production of transcalifornium isotopes
 - Heavy U isotopes followed by beta decay
 - Successive neutron capture to form Es and Fm
 - Similar to r-process in nucleosynthesis
- Ion exchange used to separate new elements
Md, No, and Lr discovery

- 1st atom-at-a-time chemistry
 - $^{253}\text{Es}(^{4}\text{He},\text{n})^{256}\text{Md}$
- Required high degree of chemical separation
- Use catcher foil
 - Recoil of product onto foil
 - Dissolved Au foil, then ion exchange
- Nobelium controversy
 - Expected to have trivalent chemistry
 - Actually divalent, filled 5f orbital
 * Divalent from removing 7s electrons
 - 1st attempt could not be reproduced
 - Showed divalent oxidation state
 - $^{246}\text{Cm}(^{12}\text{C},4\text{n})^{254}\text{No}$
 - Alpha decay from ^{254}No
 - Identification of ^{250}Fm daughter using ion exchange
- For Lr $^{249, 250, 251}\text{Cf}$ bombarded with $^{10, 11}\text{B}$
- New isotope with 8.6 MeV, 6 second half life
 - Identified at ^{258}Lr
End of Lecture 1, Part 1

• Readings:
 ▪ Chart of the nuclides
 ➔ Class handout
 ▪ Table of the isotopes
 ▪ Modern Nuclear Chemistry: Chapter 1
 ➔ http://radchem.nevada.edu/docs/course%20reading/Nuc%20&%20Radchem%203rd%20Ed%20Friedlander.pdf

• Class organization
• Outcomes
• Grading
• Resources
 ▪ Chart of the nuclides book (bring to class everyday!)
 ▪ Electronic resources
 ➔ Web pages, pdfs, apps, programs, blog
• History of radiation research
RFSS Lecture 1: Introduction Part 2

- Readings:
 - Chart of the nuclides
 → Class handout
 - Table of the isotopes
 - Modern Nuclear Chemistry: Chapter 1
 → http://radchem.nevada.edu/docs/course%20reading/Nuc%20&%20Radchem%203rd%20Ed%20Friedlander.pdf
- Class organization
- Outcomes
- Grading
- Resources
 - Chart of the nuclides book (bring to class everyday!)
 - Electronic resources
 → Web pages, pdfs, apps, programs, blog
- History of radiation research
- Chart of the nuclides and Table of the isotopes
 - Description and use
 - Data
- Radiochemistry introduction
 - Atomic properties
 - Nuclear nomenclature
 - X-rays
 - Types of decays
 - Forces (limit of course instruction)
Radiochemistry terms and concepts

• Radiochemistry
 ▪ Chemistry of the radioactive isotopes and elements
 ▪ Utilization of nuclear properties in evaluating and understanding chemistry
 ▪ Intersection of chart of the nuclides and periodic table

• Atom
 ▪ Z and N in nucleus (10^{-14} \text{ m})
 ▪ Electron interaction with nucleus basis of chemical properties (10^{-10} \text{ m})
 → Electrons can be excited
 * Higher energy orbitals
 * Ionization
 ➢ Binding energy of electron effects ionization
 ▪ Isotopes
 → Same Z different N
 ▪ Isobar
 → Same A (sum of Z and N)
 ▪ Isotone
 → Same N, different Z
 ▪ Isomer
 → Nuclide in excited state
 → ^{99}\text{m} \text{Tc}
Types of Decay

1. α decay (occurs among the heavier elements)

\[^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + ^4_2 \alpha + \text{Energy} \]

2. β⁻ decay

\[^{131}_{53}I \rightarrow ^{131}_{54}Xe + \beta^- + \bar{\nu} + \text{Energy} \]

3. Positron emission

\[^{22}_{11}Na \rightarrow ^{22}_{10}Ne + \beta^+ + \nu + \text{Energy} \]

4. Electron capture

\[^{26}_{13}Al + \beta^- \rightarrow ^{26}_{12}Mg + \nu + \text{Energy} \]

5. Spontaneous fission

\[^{252}_{98}Cf \rightarrow ^{140}_{54}Xe + ^{108}_{44}Ru + 4^1_0 n + \text{Energy} \]
Fission Products

- Fission yield curve varies with fissile isotope
- 2 peak areas for U and Pu thermal neutron induced fission
- Variation in light fragment peak
- Influence of neutron energy observed

\[^{235}\text{U fission yield} \]
Photon emission

- **Gamma decay**
 - Emission of photon from excited nucleus
 - Metastable nuclide (i.e., 99mTc)
 - Following decay to excited daughter state

- **X-ray**
 - Electron from a lower level is removed
 - Electrons from higher levels occupy resulting vacancy with photon emission
 - De-acceleration of high energy electrons
 - Electron transitions from inner orbitals
 - X-ray production
 - Bombardment of metal with high energy electrons
 - Secondary x-ray fluorescence by primary x-rays
 - Radioactive sources
 - Synchrotron sources
X-rays

- Removal of K shell electrons
 - Electrons coming from the higher levels will emit photons while falling to this K shell
 → series of rays (frequency ν or wavelength λ) are noted as K_α, K_β, K_γ
 → If the removed electrons are from the L shell, noted as L_α, L_β, L_γ

- In 1913 Moseley studied these frequencies ν, showing that:

 \[
 \sqrt{\nu} = A(Z - Z_o)
 \]

 where Z is the atomic number and, A and Z_0 are constants depending on the observed transition.

- K series, $Z_0 = 1$, L series, $Z_0 = 7.4$.

![Diagram of X-ray emissions from electron transitions]

Figure 4 Moseley relationship for K_α and L_α radiation
Chart of the Nuclides

- Presentation of data on nuclides
 - Information on chemical element
 - Nuclide information
 - Spin and parity (0^+ for even-even nuclides)
 - Fission yield
 - Stable isotope
 - Isotopic abundance
 - Reaction cross sections
 - Mass
- Radioactive isotope
 - Half-life
 - Modes of decay and energies
 - Beta disintegration energies
 - Isomeric states
 - Natural decay series
 - Reaction cross sections
- Fission yields for isobars
Chart of the nuclides

Chemical Element

- **Li** (Symbol)
- **6.941** (Atomic mass (carbon-12 scale))
- **lithium** (Element name)
- **$\sigma_a 71, 32$** (Thermal neutron absorption cross section in barns followed by resonance integral, in barns)

Stable

- **Pd108** (Symbol, mass number)
- **26.46** (Atom percent abundance)
- **$\sigma_\gamma (0.19 + 8), (2 + 24E1)$** (Isotopic mass (carbon-12 scale))
- **107.903892** (Fission product from the slow neutron fission of U235)
- **Ground states of even Z, even N nuclides have spin and parity 0+**
- **Thermal neutron capture cross sections in barns leading to (isomeric + ground state), followed by resonance integrals leading to (isomeric + ground state)**
Chart of the nuclides

Artificially Radioactive

Symbol, mass number

Nd^{147}

Spin and parity, $5/2^-$

Half-life

10.98 d

Modes of decay in order of prominence with energy of radiation in MeV for alpha and beta, keV for gammas

β: 0.805 ...

γ: 91.1, 531.0, ...

σ_γ: $4E2$, $2E2$

Fission product from the slow neutron fission of U235

Beta disintegration energy in MeV

E: 0.896

Naturally Occurring or Otherwise Available but Radioactive

Symbol, mass number

La^{138}

Spin and parity 5^+

Atom percent abundance

0.090

Half-life

$1.05E11 \text{ a}$

σ: 57, $4E2$

Beta disintegration energy

E: $1.04 \times 10^1 + 1.737$

Isotopic mass

137.907112

Thermal neutron capture cross section, followed by resonance integral

1435.8, 788.7
Member of Naturally Radioactive Decay Chain

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol, mass number</th>
<th>Half-life</th>
<th>Modes of decay</th>
<th>Energy of radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb210</td>
<td>§</td>
<td></td>
<td>β+ 0.017, 0.061</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>γ 46.5 e−</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α 3.72 νβ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>σγ 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>E 0.0635</td>
<td></td>
</tr>
</tbody>
</table>

Historical symbol:
- Indicates the radioactive decay mode and intensity.
- Beta disintegration energy in MeV.

Two Isomeric States One Stable

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol, mass number</th>
<th>Atom percent abundance</th>
<th>Half-life</th>
<th>Energy of radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe129</td>
<td>1/2</td>
<td></td>
<td>11.26 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>198.6 e−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>39.5 e−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>E 0.2085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>26.4006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>128.904779</td>
<td></td>
</tr>
</tbody>
</table>

Spin and parity of metastable state, 5/2−
- Stable ground state.
- Fission product from the slow neutron fission of U235.

Two Isomeric States Both Radioactive

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol, mass number</th>
<th>Half-life</th>
<th>Modes of decay</th>
<th>Energy of radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te131</td>
<td>§</td>
<td></td>
<td>β+ 0.42, 2.1, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>γ 773.7, 852.2, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>γ 149.7, 452.3, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§</td>
<td></td>
<td>E 2.3285</td>
<td></td>
</tr>
</tbody>
</table>

Spin and parity of metastable state, 3/2−
- Stable ground state.
- Fission product from the slow neutron fission of U235.
Chart of the Nuclide: Fission yields

FISSION YIELDS FROM URANIUM 233 AND PLUTONIUM (239)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sn</td>
<td>Sn100</td>
<td>Sn101</td>
<td>Sn102</td>
<td>Sn103</td>
<td>Sn105</td>
</tr>
<tr>
<td></td>
<td>118.710</td>
<td>119.703</td>
<td>119.711</td>
<td>119.712</td>
<td>119.713</td>
<td>119.719</td>
</tr>
<tr>
<td></td>
<td>0.61 s</td>
<td>0.81 s</td>
<td>1.7 s</td>
<td>1.8 s</td>
<td>3.8 s</td>
<td>3.1 s</td>
</tr>
<tr>
<td></td>
<td>E.7</td>
<td>E.8</td>
<td>E.9</td>
<td>E.9</td>
<td>E.8</td>
<td>E.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>In</th>
<th>In99</th>
<th>In100</th>
<th>In101</th>
<th>In102</th>
<th>In103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>114.818</td>
<td>114.827</td>
<td>114.828</td>
<td>114.828</td>
<td>114.828</td>
<td>114.828</td>
</tr>
<tr>
<td></td>
<td>0.03 s</td>
<td>6.1 s</td>
<td>15 s</td>
<td>23.3 s</td>
<td>34 s</td>
<td>43 s</td>
</tr>
<tr>
<td></td>
<td>E.13</td>
<td>E.8</td>
<td>E.6</td>
<td>E.9</td>
<td>E.7</td>
<td>E.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Cd97</th>
<th>Cd98</th>
<th>Cd99</th>
<th>Cd100</th>
<th>Cd101</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112.411</td>
<td>112.413</td>
<td>112.413</td>
<td>112.413</td>
<td>112.413</td>
<td>112.413</td>
</tr>
<tr>
<td></td>
<td>1.7 s</td>
<td>15 s</td>
<td>23.3 s</td>
<td>34 s</td>
<td>43 s</td>
<td>61.8 s</td>
</tr>
<tr>
<td></td>
<td>E.8</td>
<td>E.6</td>
<td>E.9</td>
<td>E.7</td>
<td>E.9</td>
<td>E.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>Ag94</th>
<th>Ag95</th>
<th>Ag96</th>
<th>Ag97</th>
<th>Ag98</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>107.8692</td>
<td>107.8672</td>
<td>107.8672</td>
<td>107.8672</td>
<td>107.8672</td>
<td>107.8672</td>
</tr>
<tr>
<td></td>
<td>0.8 s</td>
<td>0.3 s</td>
<td>1.2 s</td>
<td>4.4 s</td>
<td>6.8 s</td>
<td>47.4 s</td>
</tr>
<tr>
<td></td>
<td>E.10</td>
<td>E.11</td>
<td>E.7</td>
<td>E.9</td>
<td>E.8</td>
<td>E.7</td>
</tr>
</tbody>
</table>
Fission yields

FISSION YIELDS FROM URANIUM 235
Terms and decay modes: Utilization of chart of the nuclides

- Identify the isomer, isobars, isotones, and isotopes
 - ^{60m}Co, ^{57}Co, ^{97}Nb, ^{58}Co, ^{57}Ni, ^{57}Fe, ^{59}Ni, ^{99m}Tc
- Identify the daughter from the decay of the following isotopes
 - ^{210}Po (alpha decay, ^{206}Pb)
 - ^{196}Pb
 - ^{204}Bi (EC decay, ^{204}Pb)
 - ^{209}Pb
 - ^{222}At
 - ^{212}Bi (both alpha and beta decay)
 - ^{208}Pb (stable)
- How is ^{14}C naturally produced
 - Reactions with atmosphere (^{14}N as target)
- Identify 5 naturally occurring radionuclides with Z<84
Chart of the Nuclides Questions

• How many stable isotopes of Ni?
• What is the mass and isotopic abundance of ^{84}Sr?
• Spin and parity of ^{201}Hg?
• Decay modes and decay energies of ^{212}Bi
• What are the isotopes in the ^{235}U decay series?
• What is the half-life of ^{176}Lu?
• What is the half-life of ^{176}Yb
• How is ^{238}Pu produced?
• How is ^{239}Pu made from ^{238}U
• Which actinide isotopes are likely to undergo neutron induced fission?
• Which isotopes are likely to undergo alpha decay?

• What is the half life of ^{130}Te
 ▪ What is its decay mode?
• What cross section data is provided for ^{130}Te?
Table of the Isotopes

- Detailed information about each isotope
 - Mass chain decay scheme
 - Mass excess (M-A)
 - Mass difference, units in energy (MeV)
 - Particle separation energy
 - Populating reactions and decay modes
 - Gamma data
 - Transitions, % intensities
 - Decay levels
 - Energy, spin, parity, half-life
 - Structure drawing
Table of Isotopes

CD ROM Edition

Version 1.0
March, 1996

by Richard B. Firestone
Virginia S. Shirley Editor
S.Y. Frank Chu CD-ROM Editor
Coral M. Baglin and Jean Zipkin Assistant Editors

† This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under contract DE-AC03-76SF00098, subcontract LBL no. 4573810.
Table of the isotopes

<table>
<thead>
<tr>
<th>Chart of Nuclides</th>
<th>Summary Scheme Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z=0-28</td>
<td>A=1 A=38 A=75 A=112 A=149 A=186 A=223 A=260</td>
</tr>
<tr>
<td>Z=28-45</td>
<td>A=2 A=39 A=76 A=113 A=150 A=187 A=224 A=261</td>
</tr>
<tr>
<td>Z=45-60</td>
<td>A=3 A=40 A=77 A=114 A=151 A=188 A=225 A=262</td>
</tr>
<tr>
<td>Z=60-74</td>
<td>A=4 A=41 A=78 A=115 A=152 A=189 A=226 A=263</td>
</tr>
<tr>
<td>Z=74-83</td>
<td>A=5 A=42 A=79 A=116 A=153 A=190 A=227 A=264</td>
</tr>
<tr>
<td>Z=83-91</td>
<td>A=6 A=43 A=80 A=117 A=154 A=191 A=228 A=265</td>
</tr>
<tr>
<td>Z=91-111</td>
<td>A=7 A=44 A=81 A=118 A=155 A=192 A=229 A=266</td>
</tr>
<tr>
<td></td>
<td>A=8 A=45 A=82 A=119 A=156 A=193 A=230 A=267</td>
</tr>
<tr>
<td></td>
<td>A=9 A=46 A=83 A=120 A=157 A=194 A=231 A=268</td>
</tr>
<tr>
<td></td>
<td>A=10 A=47 A=84 A=121 A=158 A=195 A=232 A=269</td>
</tr>
<tr>
<td></td>
<td>A=11 A=48 A=85 A=122 A=159 A=196 A=233 A=271</td>
</tr>
<tr>
<td></td>
<td>A=12 A=49 A=86 A=123 A=160 A=197 A=234 A=272</td>
</tr>
<tr>
<td></td>
<td>A=13 A=50 A=87 A=124 A=161 A=198 A=235</td>
</tr>
<tr>
<td></td>
<td>A=14 A=51 A=88 A=125 A=162 A=199 A=236</td>
</tr>
<tr>
<td></td>
<td>A=15 A=52 A=89 A=126 A=163 A=200 A=237</td>
</tr>
<tr>
<td></td>
<td>A=16 A=53 A=90 A=127 A=164 A=201 A=238</td>
</tr>
<tr>
<td></td>
<td>A=17 A=54 A=91 A=128 A=165 A=202 A=239</td>
</tr>
<tr>
<td></td>
<td>A=18 A=55 A=92 A=129 A=166 A=203 A=240</td>
</tr>
<tr>
<td></td>
<td>A=19 A=56 A=93 A=130 A=167 A=204 A=241</td>
</tr>
<tr>
<td></td>
<td>A=20 A=57 A=94 A=131 A=168 A=205 A=242</td>
</tr>
<tr>
<td></td>
<td>A=21 A=58 A=95 A=132 A=169 A=206 A=243</td>
</tr>
<tr>
<td></td>
<td>A=22 A=59 A=96 A=133 A=170 A=207 A=244</td>
</tr>
<tr>
<td></td>
<td>A=23 A=60 A=97 A=134 A=171 A=208 A=245</td>
</tr>
<tr>
<td></td>
<td>A=24 A=61 A=98 A=135 A=172 A=209 A=246</td>
</tr>
<tr>
<td></td>
<td>A=26 A=63 A=100 A=137 A=174 A=211 A=248</td>
</tr>
<tr>
<td></td>
<td>A=27 A=64 A=101 A=138 A=175 A=212 A=249</td>
</tr>
<tr>
<td></td>
<td>A=28 A=65 A=102 A=139 A=176 A=213 A=250</td>
</tr>
<tr>
<td></td>
<td>A=29 A=66 A=103 A=140 A=177 A=214 A=251</td>
</tr>
<tr>
<td></td>
<td>A=30 A=67 A=104 A=141 A=178 A=215 A=252</td>
</tr>
<tr>
<td></td>
<td>A=31 A=68 A=105 A=142 A=179 A=216 A=253</td>
</tr>
<tr>
<td></td>
<td>A=32 A=69 A=106 A=143 A=180 A=217 A=254</td>
</tr>
<tr>
<td></td>
<td>A=33 A=70 A=107 A=144 A=181 A=218 A=255</td>
</tr>
<tr>
<td></td>
<td>A=34 A=71 A=108 A=145 A=182 A=219 A=256</td>
</tr>
<tr>
<td></td>
<td>A=35 A=72 A=109 A=146 A=183 A=220 A=257</td>
</tr>
<tr>
<td></td>
<td>A=36 A=73 A=110 A=147 A=184 A=221 A=258</td>
</tr>
<tr>
<td></td>
<td>A=37 A=74 A=111 A=148 A=185 A=222 A=259</td>
</tr>
</tbody>
</table>
Half Lives

\[\frac{N}{N_0} = e^{-\lambda t} \]

\[N = N_0 e^{-\lambda t} \]

\(\lambda = \frac{(\ln 2)}{t_{1/2}} \)

\(\lambda \) is decay constant

\(N_0 = \) number at time zero (atoms, mass, moles)

\(N = \) number at time \(t \)

Rate of decay of \(^{131}\text{I} \) as a function of time.
Equation questions

- Calculate decay constant for the following

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$t_{1/2}$</th>
<th>λ</th>
<th>λ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{75}Se</td>
<td>119.78 days</td>
<td>5.79E-3 d$^{-1}$</td>
<td>6.78E-8</td>
</tr>
<tr>
<td>^{74}mGa</td>
<td>10 seconds</td>
<td>6.93E-2 s$^{-1}$</td>
<td>6.93E-2</td>
</tr>
<tr>
<td>^{81}Zn</td>
<td>0.32 seconds</td>
<td>2.17 s$^{-1}$</td>
<td>2.17</td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>30.07 years</td>
<td>2.31E-2 a$^{-1}$</td>
<td>7.30E-10</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>2.41E4 years</td>
<td>2.88E-5 a$^{-1}$</td>
<td>9.11E-13</td>
</tr>
</tbody>
</table>

- ^{75}Se example
 $\Rightarrow \lambda = \ln(2)/119.78 \text{ day} = 0.00579 \text{ d}^{-1}$
 $\Rightarrow \lambda = 0.00579 \text{ d}^{-1} \times 1 \text{ d}/24 \text{ hr} \times 1 \text{ hr}/3600 \text{ s}$
 $= 6.7E-8 \text{ s}^{-1}$
Equation Questions

• What percentage of 66As remains from a given amount after 0.5 seconds
 - Use $\frac{N}{N_0} = e^{-\lambda t}$
 \[t_{1/2} = 95.6 \text{ ms}; \lambda = 7.25 \text{ s}^{-1} \]
 \[\frac{N}{N_0} = e^{-\lambda t} = N/N_0 = e^{-7.25(0.5)} = 0.0266 = 2.66\% \]
 * After 5.23 half lives
• How long would it take to decay 90 % of 65Zn?
 - Use $\frac{N}{N_0} = e^{-\lambda t}$
 - 90 % decay means 10 % remains
 \[\text{Set } \frac{N}{N_0} = 0.1, t_{1/2} = 244 \text{ d}, \lambda = 2.84 \times 10^{-3} \text{ d}^{-1} \]
 \[0.1 = e^{-2.84 \times 10^{-3} t} \]
 \[\ln(0.1) = -2.84 \times 10^{-3} \text{ d}^{-1} t \]
 \[t = \frac{-2.30}{-2.84 \times 10^{-3} \text{ d}^{-1}} = 810 \text{ days} \]
Equation Questions

• If you have 1 g of 72Se initially, how much remains in 12 days?
 - $t_{1/2} = 8.5 \text{ d}$, $\lambda = 8.15 \times 10^{-2} \text{ d}^{-1}$
 - $N = N_0 e^{-\lambda t}$
 - $N = (1 \text{ g}) e^{-8.15 \times 10^{-2}(12)}$
 - $N = 0.376 \text{ g}$

• What if you started with 10000 atoms of 72Se, how many atoms after 12 days?
 - $0.376 (37.6 \%)$ remains
 - $10000(0.376) = 3760$ atoms
What holds the nucleus together: Forces in nature

- Four fundamental forces in nature
- Gravity
 - Weakest force
 - Interacting massive objects
- Weak interaction
 - Beta decay
- Electromagnetic force
 - Most observable interactions
- Strong interaction
 - Nuclear properties
Particle Physics: Boundary of Course

- fundamental particles of nature and interaction symmetries
- Particles classified as fermions or bosons
 - Fermions obey the Pauli principle
 - antisymmetric wave functions
 - half-integer spins
 * Neutrons, protons and electrons
 - Bosons do not obey Pauli principle
 * symmetric wave functions and integer spins
 > Photons
Standard Model

- Boson are force carriers
 - Photon, W and Z bosons, gluon
 - Integer spin
- What are the quarks in a proton and a neutron?
Topic review

- History of nuclear physics research
- Discovery of the radioelements
 - Methods and techniques used
- Types of radioactive decay
 - Define X-rays and gamma decay
- Understand and utilize the data presented in the chart of the nuclides and table of the isotopes
- Utilize the fundamental decay equations
- Identify common fission products
Study Questions

• What are the course outcomes?
• What were important historical moments in radiochemistry?
• Who were the important scientists in the investigation of nuclear properties?
• What are the different types of radioactive decay?
• What are some commonalities in the discovery of the actinides?
• Provide 5 radioelements
Pop Quiz

- Respond to PDF quiz
- Provide comments in blog when complete