Radiochemistry Ph.D. Program
Fuel Cycle Separations Subgroup

Students
Ed Mausolf
Wendy Pemberton
Troy Robinson
Audrey Roman
Nicholas Smith
Jamie Warburton
Amber Wright

Faculty
Patricia Paviet-Hartmann
Ken Czerwinski
Dave Hatchett
Philippe Weck
Radiochemistry Research Program Concepts

• Research areas
 ▪ Radiochemical materials synthesis and characterization
 ▪ Fuel cycle separations
 ▪ Radioanalytical separations

• Chemistry based analysis of actinides and technetium
 ▪ Interested in chemical species and coordination, focus on radioelements

• Research with radionuclides
 ▪ Kg quantity of Th and U
 ▪ Gram amount of Tc, Np, Pu
 ▪ Milligram quantity of Am and Cm

• Research coupled with education program
 ▪ Provide undergraduate and graduate students with actinide research opportunities

• Develop a center of excellence in radiochemistry
 ▪ Noted researchers, strong collaborations
Program Resources

- **Spectroscopy**
 - UV-Visible
 - Laser Fluorescence
 - NMR
 - IR
 - EELS
 - XAFS (APS @ ANL)

- **Radiochemical separation and detection**
 - Gross alpha/beta counting
 - α-spectroscopy
 - γ-spectroscopy
 - Liquid Scintillation Counting

- **Thermal methods**
 - TGA, DSC

- **Scattering**
 - Powder XRD
 - Single crystal XRD

- **Contactors for Separations**

- **Analytical**
 - ICP-AES
 - ICP-MS
 - Electrospray-MS
 - Laser Ablation MS
 - Automated Titrator

- **Microscopy**
 - Optical
 - SEM
 - TEM

- **General Equipment**
 - Box/Tube furnaces
 - Glove Boxes
 - Arc Welder
 - Ultracentrifuge
 - Ball Mill
 - 10 tonne die press
 - Electron microscopy sample preparation
Technetium Studies

- UREX process Tc/U separation
 - Resins are tested for Tc loading and strip efficiency
 - Steam reforming process developed for conversion to Tc metal for waste form

Analysis of waste forms
- Suitability for repository storage
- Leach characteristics
- Electrochemical behavior

\[\text{UO}_2^{+2} + \text{TcO}_4^- \]
Electrochemical Corrosion Studies

Tc electrode: acceleration corrosion test

$m = 80 \text{ mg, } A = 3.3 \text{ mm}^2$

Tc electrode

Set-up for corrosion exp

E_{corr}: shift from -54 mV (t= 2min) to $+46 \text{ mV (t= 15 hours)}$

Transpassivation behavior around $+195 \text{ mV}$
Room Temperature Ionic Liquids

• RTILs are becoming more popular
 • “Green” solvents (some exceptions)
 • No measurable vapor pressure
• RTIL Advantages
 • Electrochemical windows up to 7 volts
 • Water free systems
 • Organic & inorganic synthesis
 • Separations
 • Polymerization
• U(III) systems
 • Utilizing lower oxidation state in inert atmosphere provides more
direct mechanism for metallic alpha uranium deposition
 • Metallic uranium has many potential uses
 • Vast interest in waste forms
 • Potential reactor fuel
 • Target material for generating medically useful 99Mo
Process Monitoring & Safeguards

• UV-Vis monitoring of process streams
 ▪ Confirm stated process chemistry
 ▪ Detect diversion attempts

• Fiber optic dip probe inserted into product of UREX demo in contactors at ANL for \([\text{UO}_2^{2+}]\) measurement
 ▪ Spectral acquisition time of 250 μs
 ▪ Focus on trends over time rather than single data points
 ▪ Coupled with flow meters
Contactor Bank

- Purchased and installed 3 CINC V02 (2”) contactors
 - 316 SS, suited for lab scale or pilot plant work
 - 1 or 2 phases (in the case of 1 mixed phase, can be used for separation)
 - 5 cm (2”) design reported to not exhibit pulsed flow problems
 - 1.9 LPM max throughput (combined phases)
 - 2000-6000 RPM, 100-900 Gs
 - 200 mL holdup volume
 - 220 V/3 phase, draws 0.2-0.4 amps

- Experimental parameters
 - Flow rate
 - Concentration
 - Process chemistry
 - Nuclide content

- Used as a test bed for MC&A, process monitoring techniques
TBP/dodecane/HNO₃ systems

- Basic physiochemical data incomplete in the available literature
 - Vapor pressure
 - Solubility
 - Density
- Investigation of properties as functions of T, [HNO₃], [HNO₂], [HDBP], [UO₂²⁺], and [Zr⁴⁺]
- TBP degradation in the presence of HNO₃ has been studied over several decades
 - Discrepancies remain in hydrolysis rates, products and reaction heats
 - Thermal analysis with mass spectrometric analysis of gaseous reaction products proposed
Actinide Speciation and Spectroscopy

- Actinide speciation data set is varied and incomplete
 - Determination of thermodynamic quantities
 - Modeling and experiment
- Titrations
 - Competitive titrations to determine the stability constants of the UO$_2^{2+}$-NO$_3^-$ system
 - Spectrophotometric titrations
- UV-Visible spectroscopy
 - Used for chemistry-based safeguards
 - Online monitoring of SNM
 - Real time Material Control and Accountability
 - Process/chemistry control
 - Development of a robust method for simultaneous, online determination of nitrate and uranium in a reprocessing plant
 - Adaptation of bench scale work (1 cm pathlength) to waveguide based (1 m pathlength) experiments for reduced higher actinide load
- Laser induced fluorescence of Curium for trace level determinations
Solvent Extraction Fundamental Chemistry

- **Extractant Aggregation**
 - Vapor Pressure Osmometry
- **Water Extraction**
 - Karl Fischer Titration
- **Stability Constant Titration**
 - Spectrophotometric
 - Potentiometric

\[n_{agg} = \frac{6589}{3140} = 2.08 \pm 0.04 \]

\[\frac{H_2O}{\text{Ligand}} = \frac{1.576}{1} \]
Stability Constant Modeling

8-Hydroxyquinoline Spectrophotometric Titration

Stability Quotients from Absorbance Data

![Absorbance Graph](image)

<table>
<thead>
<tr>
<th>Species</th>
<th>β (log)</th>
<th>K (log)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_2(Q)$</td>
<td>15.38±0.01</td>
<td>5.30</td>
</tr>
<tr>
<td>$H(Q)$</td>
<td>10.08±0.01</td>
<td>10.08</td>
</tr>
</tbody>
</table>

Fundamentals

![Fundamentals Graph](image)
Radiochemistry Program – Fall 2009