Lecture 7: Neptunium Chemistry

- From: Chemistry of actinides
 - Nuclear properties and isotope production
 - Separation and Purification
 - Metallic state
 - Compounds
 - Solution chemistry
 - Structure and coordination chemistry
 - Analytical Chemistry
Neptunium nuclear properties

- 22 known Np isotopes
 - ^{237}Np longest lived
 - Neutron irradiation of U
 * Consecutive neutron capture on ^{235}U
 * $^{238}\text{U}(n,2n)^{237}\text{U} \rightarrow ^{237}\text{Np} + \beta^-$
 * Alpha decay of ^{241}Am
 - Used at target for ^{238}Pu production by neutron irradiation
 - Reaction with 23 MeV and 30 MeV electrons to produce ^{236}Pu
 - Critical mass is 73 kg
 - 2500 kg in environment from fallout
 - $^{238,239}\text{Np}$
 - Short half-life, useful radiotracers
 * From neutron irradiation of ^{237}Np and ^{238}U
 - $^{235,236}\text{Np}$
 - Cyclotron irradiation of ^{235}U
 * $^{235}\text{U}(d,n)^{236}\text{Np}$
 * $^{235}\text{U}(p,n)^{235}\text{Np}$
- Np isotopes formed in Earth’s crust
 - Dynamic equilibrium established
<table>
<thead>
<tr>
<th>Mass number</th>
<th>Half-life</th>
<th>Mode of decay</th>
<th>Main radiations (MeV)</th>
<th>Method of production</th>
</tr>
</thead>
<tbody>
<tr>
<td>226</td>
<td>31 ms</td>
<td>EC, α</td>
<td>α 8.044</td>
<td>209Bi(22Ne,5n)</td>
</tr>
<tr>
<td>227</td>
<td>0.51 s</td>
<td>EC, α</td>
<td>α 7.677</td>
<td>209Bi(22Ne,4n)</td>
</tr>
<tr>
<td>228</td>
<td>61.4 s</td>
<td>EC, α</td>
<td>α 6.890</td>
<td>209Bi(22Ne,3n)</td>
</tr>
<tr>
<td>229</td>
<td>4.0 min</td>
<td>α ≥ 50%</td>
<td>α 6.66</td>
<td>232U(p,5n)</td>
</tr>
<tr>
<td>230</td>
<td>4.6 min</td>
<td>EC ≥ 99%</td>
<td>α 6.66</td>
<td>232U(p,4n)</td>
</tr>
<tr>
<td>231</td>
<td>48.8 min</td>
<td>EC < 99%</td>
<td>α 6.28</td>
<td>233U(d,4n)</td>
</tr>
<tr>
<td>232</td>
<td>14.7 min</td>
<td>EC > 99%</td>
<td>γ 0.371</td>
<td>233U(d,6n)</td>
</tr>
<tr>
<td>233</td>
<td>36.2 min</td>
<td>EC < 99%</td>
<td>γ 0.327</td>
<td>233U(d,3n)</td>
</tr>
<tr>
<td>234</td>
<td>4.4 d</td>
<td>EC 99.95% β+ 0.05%</td>
<td>γ 1.559</td>
<td>233U(d,2n)</td>
</tr>
<tr>
<td>235</td>
<td>396.1 d</td>
<td>EC > 99% α 1.6 × 10−3%</td>
<td>α 5.022 (53%)</td>
<td>235U(p,2n)</td>
</tr>
<tr>
<td>236</td>
<td>22.5 h</td>
<td>β− 50%</td>
<td>β− 0.54</td>
<td>233U(d,n)</td>
</tr>
<tr>
<td></td>
<td>1.54 × 105 yr</td>
<td>EC 87% β− 13%</td>
<td>γ 0.163</td>
<td>235U(d,n)</td>
</tr>
<tr>
<td>237</td>
<td>2.144 × 106 yr</td>
<td>α >1 × 1018 yr SF</td>
<td>γ 0.086 (51%)</td>
<td>237U daughter</td>
</tr>
<tr>
<td>238</td>
<td>2.117 d</td>
<td>β−</td>
<td>β− 1.29</td>
<td>237Np(n,γ)</td>
</tr>
<tr>
<td>239</td>
<td>2.3565 d</td>
<td>β−</td>
<td>β− 0.72</td>
<td>243Am daughter</td>
</tr>
<tr>
<td>240</td>
<td>1.032 h</td>
<td>β−</td>
<td>γ 0.106</td>
<td>238U daughter</td>
</tr>
<tr>
<td></td>
<td>7.22 min</td>
<td>β−</td>
<td>β− 2.09</td>
<td>238U(α,3n)</td>
</tr>
<tr>
<td></td>
<td>13.9 min</td>
<td>β−</td>
<td>γ 0.566</td>
<td>240U daughter</td>
</tr>
<tr>
<td>241</td>
<td>5.5 min</td>
<td>β−</td>
<td>β− 2.05</td>
<td>238U(α,2n)</td>
</tr>
<tr>
<td>242</td>
<td>2.2 min</td>
<td>β−</td>
<td>γ 0.555</td>
<td>240Pu(p,3n)</td>
</tr>
<tr>
<td>242</td>
<td>1.85 min</td>
<td>β−</td>
<td>γ 0.175</td>
<td>240Pu(p,2n)</td>
</tr>
<tr>
<td>244</td>
<td>2.29 min</td>
<td>β−</td>
<td>γ 0.736</td>
<td>240Pu(p,2n)</td>
</tr>
</tbody>
</table>

* Not known whether ground-state nuclide or isomer.
Np separation chemistry

- Most methods exploit redox chemistry of Np
- Solvent extraction
 - 2-thenoyltrifluoroacetone
 - Reduction to Np(IV)
 * Extraction in 0.5 M HNO₃
 * Back extract in 8 M HNO₃
 - Oxidation to Np(V), extraction into 1 M HNO₃
 - Pyrazolone derivatives
 - Np(IV) extracted from 1 to 4 M HNO₃
 - Prevents Np(IV) hydrolysis
 - No extraction of Np(V) or Np(VI)
 - Pyrazolone derivatives synergistic extraction with tri-n-octylphosphine oxide (TOPO)
 - Separate Np(V) from Am, Cm, U(VI), Pu(IV) and lanthanides
 - 1:2 Np:ligand ratio as extracted species
TABLE 18

EXTRACTION COEFFICIENTS FOR VARIOUS IONS INTO 0.5M TTA-XYLENE

<table>
<thead>
<tr>
<th>Ion</th>
<th>HNO_3 (M)</th>
<th>Extraction Coefficient at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Np(III)</td>
<td>1.0</td>
<td>$<3 \times 10^{-8}$</td>
</tr>
<tr>
<td>Np(IV)</td>
<td>1.0</td>
<td>1×10^4</td>
</tr>
<tr>
<td>Np(V)</td>
<td>8.0</td>
<td>$<1 \times 10^{-2}$</td>
</tr>
<tr>
<td>Np(VI)</td>
<td>0.8</td>
<td>$<5 \times 10^{-4}$</td>
</tr>
<tr>
<td>Pu(III)</td>
<td>1.0</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>Pu(IV)</td>
<td>1.0</td>
<td>1×10^6</td>
</tr>
<tr>
<td>Pu(V)</td>
<td>8.0</td>
<td>$<1 \times 10^{-2}$</td>
</tr>
<tr>
<td>Pu(VI)</td>
<td>1.0</td>
<td>$<1 \times 10^{-6}$</td>
</tr>
<tr>
<td>U(VI)</td>
<td>1.0</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>1.0</td>
<td>$<1 \times 10^{-3}$</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>1.0</td>
<td>375</td>
</tr>
<tr>
<td>Ce(III)</td>
<td>1.0</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Ce(IV)</td>
<td>1.0</td>
<td>1×10^3</td>
</tr>
<tr>
<td>Zr(IV)</td>
<td>1.0</td>
<td>1×10^7</td>
</tr>
<tr>
<td>Am(III)</td>
<td>8.0</td>
<td>250</td>
</tr>
<tr>
<td>Al(III)</td>
<td>1.0</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>Na</td>
<td>1.0</td>
<td>1×10^{-20}</td>
</tr>
<tr>
<td>Nb(V)</td>
<td>1.0</td>
<td>1×10^{-20}</td>
</tr>
<tr>
<td>Th(IV)</td>
<td>1.0</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Fig. 6.2 Structure of pyrazole derivatives.
Fig. 6.3 Log D vs $-\log \left[H^+\right]$ plots for the extraction of Np$^{4+}$ in HNO$_3$ solution with 1×10^{-3} M H_2BPn and HPMBP in chloroform solution. (From Takeishi et al., 2001, with permission from Elsevier). (1) H_2BP_3, (2) H_2BP_4, (3) H_2BP_5, (4) H_2BP_6, (5) H_2BP_7, (6) H_2BP_8, (7) H_2BP_{10}, (8) H_2BP_{22}; dotted line, HPMBP.
FIGURE 4. Percentage Extraction of Tracer Quantities of Ac(III), Am(III), Cm(III), Cf(III), Np(IV), and Pa(V) with 0.1M 8-Hydroxyquinoline/CHCl₃, and of Ra(II) with 1.0M 8-Hydroxyquinoline/CHCl₃ [μ = 0.1M (Na, NH₄, H)ClO₄, 25°C]. [C. Keller and M. Mosidzelenski, Radiochim. Acta. 7, 185(1967) Supplemented].
Np solvent extraction

- **Tributylphosphosphate**
 - NpO$_2$(NO$_3$)$_2$(TBP)$_2$ and Np(NO$_3$)$_4$(TBP)$_2$ are extracted species
 - Extraction increases with increase concentration of TBP and nitric acid
 * 1-10 M HNO$_3$
 - Separation from other actinides achieved by controlling Np oxidation state

- **CMPO**
 - Usually used with TBP
 - Nitric acid solutions
 - Separation achieved with oxidation state adjustment
 - Reduction of Pu and Np by Fe(II) sulfamate
 - Np(IV) extracted into organic, then removed with carbonate, oxalate, or EDTA
<table>
<thead>
<tr>
<th>Ion</th>
<th>Solution</th>
<th>TBP (%)</th>
<th>Extraction Coefficient At 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am(III)</td>
<td>4.0M HNO₃</td>
<td>30</td>
<td>0.013</td>
</tr>
<tr>
<td>Al</td>
<td>4.7M</td>
<td>15</td>
<td>0.0003</td>
</tr>
<tr>
<td>Ca</td>
<td>4.7M</td>
<td>15</td>
<td>0.0003</td>
</tr>
<tr>
<td>Co(II)</td>
<td>2.14M Co(NO₃)₂</td>
<td>60</td>
<td>0.002</td>
</tr>
<tr>
<td>Cr(III)</td>
<td>3.0M HNO₃</td>
<td>100</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cu(II)</td>
<td>3.0M</td>
<td>100</td>
<td>0.0004</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>4.7M</td>
<td>15</td>
<td>0.0005</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>2.0M</td>
<td>12.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Mg</td>
<td>4.7M</td>
<td>15</td>
<td>0.0003</td>
</tr>
<tr>
<td>Na</td>
<td>2.0M</td>
<td>12.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>3.0M</td>
<td>100</td>
<td>0.00006</td>
</tr>
<tr>
<td>Np(IV)</td>
<td>4.0M</td>
<td>30</td>
<td>3.0</td>
</tr>
<tr>
<td>Np(VI)</td>
<td>4.0M</td>
<td>30</td>
<td>12.0</td>
</tr>
<tr>
<td>Th</td>
<td>4.0M</td>
<td>30</td>
<td>2.8</td>
</tr>
<tr>
<td>Pa</td>
<td>4.0M</td>
<td>50</td>
<td>2.8</td>
</tr>
<tr>
<td>Zn</td>
<td>2.0M Zn(NO₃)₂</td>
<td>12.5</td>
<td>0.0001</td>
</tr>
<tr>
<td>Ru</td>
<td>2.0M HNO₃</td>
<td>30</td>
<td>0.15</td>
</tr>
<tr>
<td>Zr</td>
<td>2.0M</td>
<td>30</td>
<td>0.09</td>
</tr>
<tr>
<td>Nb</td>
<td>2.0M</td>
<td>30</td>
<td>0.03</td>
</tr>
<tr>
<td>Rare earths</td>
<td>2.0M</td>
<td>30</td>
<td>0.02</td>
</tr>
<tr>
<td>Pu(III)</td>
<td>5.0M</td>
<td>20</td>
<td>0.012</td>
</tr>
<tr>
<td>Pu(IV)</td>
<td>5.0M</td>
<td>20</td>
<td>16.6</td>
</tr>
<tr>
<td>Pu(VI)</td>
<td>5.0M</td>
<td>20</td>
<td>2.7</td>
</tr>
<tr>
<td>U(IV)</td>
<td>4.0M</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>U(VI)</td>
<td>4.0M</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>HNO₃</td>
<td>2.0M</td>
<td>30</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Figure 5. Distribution Coefficients for the Extraction of Tetravalent Actinides by 19 vol % TBP-Kerosene from Nitric Acid Solution.165

Figure 6. Distribution Coefficients for the Extraction of Hexavalent Actinides by 19 vol % TBP-Kerosene from Nitric Acid Solution.165
Table 6.2 Distribution ratios of neptunium and plutonium ions between HNO_3 solution and 0.1 M CMPO + 1.4 M TBP (dodecane) at (278 ± 1) K (data cited from Mincher, 1989).

<table>
<thead>
<tr>
<th>Ions</th>
<th>Concentration of HNO_3 (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>NpO$_2^{2+}$</td>
<td>43</td>
</tr>
<tr>
<td>NpO$_2^+$</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Np$^{4+}$</td>
<td>0.55</td>
</tr>
<tr>
<td>Pu$^{4+}$</td>
<td>16</td>
</tr>
<tr>
<td>Pu$^{3+}$</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Np solvent extraction

• HDEHP
 ▪ In 1 M HNO₃ with addition of NaNO₂
 → U, Pu, Np, Am in most stable oxidation states
 → Np(V) is not extracted
 → Oxidized to Np(VI) then extracted
 → Reduced to Np(V) and back extracted into 0.1 M HNO₃

• Tri-n-octylamine
 ▪ Used for separation of Np from environmental samples
 → Extracted from 10 M HCl
 → Back extracted with 1 M HCl+0.1 M HF
Figure 11. The Extraction of the Quadrivalent Actinide Nitrates by 10 vol % TGA in Xylene.198

Figure 12. The Extraction of the Hexavalent Actinide Nitrates by 10 vol % TGA in Xylene.198
Figure 13. The Extraction of Pentavalent and Trivalent Actinide Nitrates by 10 vol % TOA in Xylene.188
Advanced PUREX separations

- Np(V) not extracted in PUREX
 - Np(V) slowly disproportionates in high acid
 - Formation of extractable Np(IV,VI)
 - Variation of Np behavior based on redox
 * Need to understand redox kinetics
 * Reduction of Np(VI) by a range of compounds
 - Back extraction of Np(V) can be used to separate from Pu and U
 * Controlled Np(VI) reduction in presence of Pu(III)
 - Hydrazine derivatives
 - N-butyraldehyde
 - Hydroxamic acids
 - AHA shows preferential complexation with tetravalent Np and Pu
Separation scheme

UREX → Cs, Sr, Np, Pu, Am, Cm, FP, Ln → CCD-PEG FPEX → Cs, Sr → TRUEX → FP

UREX+1a uses CCD-PEG

Tc, U → Anion exchange → U

Np, Pu, Am, Cm → TALSPEAK → Ln

7-16
Advanced Np separations

- A number of proposed routes
 - Separate Np with U and Pu
 - Reduce Np to separate from U and Pu
- Np behavior in UREX+1a
 - UREX
 - 1 M HNO$_3$, 30 % TBP
 - 30 % TBP, 0.5 M AHA, 0.3 M HNO$_3$
 * Np in raffinate (0.7 M HNO$_3$)
Chemistry in Extraction: Cs and Sr

- **CCD-PEG**
 - Cs and Sr extracted with chlorinated cobalt dicarbollide (CCD)/polyethylene glycol (PEG)
 - \(\rightarrow \) Np to raffinate and wash
 - \(\rightarrow \) Sr and Cs removed with 3 M HNO\(_3\), Guanadine carbonate (100 g/L), and DTPA (20 g/L)
 - Wash with 4 M HNO\(_3\), 250 mg/L PEG

- **FPEX**
 - BOBCalixC6
 - \(\rightarrow \) Calix[4]arene-bis-(tert-octylbenzo-\(^{-} \))
 - DtBuCH18C6
 - \(\rightarrow \) 4,4,(5)-Di-(t-butyldicyclo-hexano)-18-crowr
 - Cs-7SB modifier
 - \(\rightarrow \) 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol
 - Trioctylamine in Isopar-L
 - \(\rightarrow \) Isopar-L is branched hydrocarbon
 - 0.01 and 1.5 M HNO\(_3\)
 - AHA (from UREX)
Chemistry in Extraction

- **TRUEX**
 - Np goes with Ln and other actinides
 - 0.05 to 7 M HNO₃
 - 1.4 M TBP
 - 0.2 M Diphenyl-N,N-dibutylcarbamoyl oxide (CMPO)

- **TALSPEAK** (lanthanides from actinides)
 - 0.5 M Bis(2-ethyl-hexyl)phosphoric acid (HDEHP)
 - Extracts actinides into aqueous phase
 - 4 M HNO₃
 - DTPA (pH adjustment for Ln removal)
 - Lactic acid
Np extraction

• Diisodecylphosphoric acid (DIDPA)
 ▪ Also extracts trivalent lanthanides
 → Used in TALSPEAK like process

• Chromatography
 ▪ Available for 4-6 oxidation state
 → 4>6>5
 ▪ Np 4+ and 6+ form anionic complexes in high concentration chloride or nitrate
 ▪ Strong sorption onto anion exchange at 7-8 M HNO₃
 ▪ Elute with 0.3 M HNO₃
Figure 18. Sorption of the Elements from Nitric Acid Solutions by Strongly Basic Anion Exchange Resins.
Uranium-Neptunium-Plutonium Separation by Anion Exchange ("Dowex" 1-X10, <400 Mesh, 0.25 cm² x 3 cm Column).
Chromatography with Chelating Resins

- Resin loaded with Aliquat 336
 - TEVA resin
 - \rightarrow Np controlled by redox state
 - *Reduction with Fe(II) sulfamate and ascorbic acid

Ascorbic acid

Horwitz, et al. (HP195)
Figure 4

Effect of Matrix Constituents on Neptunium Retention
TEVA Resin 5 M HNO₃

Figure 5

Effect of Matrix Constituents on Neptunium Retention
TEVA Resin 2 M HNO₃

Horwitz, et al. (HP195)
Figure 6

Effect of oxalic acid concentration on $k'_{\text{Np(V)}}$ at various HNO$_3$ concentration

TEVA Resin 23-25°C

$[\text{HNO}_3], \text{ M}$

$[\text{H}_2\text{C}_2\text{O}_4], \text{ M}$

Horwitz, et al. (HP195)

Figure 7

Separation of Np and Pu on TEVA Resin

Horwitz, et al. (HP195)
Separation methods

• Co-precipitation
 - Np coprecipitates with
 \[\text{LaF}_3, \text{BiPO}_4, \text{BaSO}_4, \text{Fe(OH)}_3, \text{MnO}_2 \]
 - Np(V,VI) does not precipitate with LaF$_3$

• Electrodeposition
 - At cathode in LiCl, KCl eutectic
Metallic Np

- First synthesis from NpF$_3$ with Ba at 1473 K
- Current methods
 - NpF$_4$ with excess Ca
 - NpO$_2$ in a molten salt process
 - Can also use Cs$_2$NpO$_2$Cl$_4$ and Cs$_3$NpO$_2$Cl$_4$
 - LiCl/KCl as electrolyte at 723 K
 - NpC reduction with Ta followed by volatilization of Np
 - Electrodeposition from aqueous solution
 - Amalgamation with Hg from 1 M CH$_3$COOH and 0.3 M CH$_3$COONa at pH 3.5
 - Distillation to remove Hg
Metallic Np data

- Melting point 912 K
 - Boiling point estimated at 4447 K
- Density 19.38 g/mL
- Three metallic forms
 - Enthalpies and entropies of transitions
 - $\alpha \rightarrow \beta$
 - Transition T 553 K
 - $\Delta S = 10.1 \text{ JK}^{-1}\text{mol}^{-1}$
 - $\Delta H = 5.607 \text{ kJmol}^{-1}$
 - $\beta \rightarrow \gamma$
 - Transition T 856 K
 - $\Delta S = 6.23 \text{ JK}^{-1}\text{mol}^{-1}$
 - $\Delta H = 5.272 \text{ kJmol}^{-1}$

<table>
<thead>
<tr>
<th>Allotrope</th>
<th>Symmetry</th>
<th>Space group</th>
<th>a_0 (Å)</th>
<th>b_0 (Å)</th>
<th>c_0 (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Np</td>
<td>orthorhombic</td>
<td>$Pnma$</td>
<td>6.663</td>
<td>4.723</td>
<td>4.887</td>
</tr>
<tr>
<td>β-Npa</td>
<td>tetragonal</td>
<td>$P42$</td>
<td>4.897</td>
<td>-</td>
<td>3.388</td>
</tr>
<tr>
<td>γ-Npb</td>
<td>Body-centered cubic</td>
<td>$Im3m$</td>
<td>3.518</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a at 586 K.
b at 873 K.

Table 6.3 Lattice parameters and space groups for allotropes of neptunium. (Lemire et al., 2001)
Np alloys and intermetallic compounds

- Complexes show presence of f-shell electrons
 - 5f electrons can be unshielded from crystalline electric field interactions
- Range of magnetic behavior
 - Itinerant band like behavior (transition metals)
 - Localized moment behavior (lanthanides)
 → Variation in behavior based on overlap of 5f wavefunctions or formation of f electron hybridization
- NpAl₃ is ferromagnet,
 → No spin ordering found in NpGe₃ and NpSn₃
- Range of compounds examined
 - RM₂X₂
 → R=Th, Np or Pu, M is transition metal, X = Si, Ge
 - RM₂Al₃
 → R=Np or Pu; M= Ni or Pd
 - NpX₃
 → X=Al, Ga, Ge, In, or Sn
- Alloy research based on waste form development
 - Zr with Np and other actinides
Np hydrides

- Np with H$_2$
 - NpH$_{2+x}$ and NpH$_3$
- NpH$_{2+x}$ is fcc and isostructural with Pu homolog
 - Lattice constant increases with x
- NpH$_3$ is hexagonal and isostructural with Pu
- Np to H ratio examined
 - Pressure composition isotherms show change above 2
 - Other actinides have boundary at 1.9
 - Increasing H with increasing temperature
 - Opposite of the Pu system
- Thermodynamic data shows variation in literature
 - Estimated heat capacity at 298 K 47.279 J K$^{-1}$mol$^{-1}$
Table 6.4 Comparison of lattice parameters for cubic neptunium hydride.

<table>
<thead>
<tr>
<th>[H]/[Np]</th>
<th>Mulford et al. a_0 (Å)</th>
<th>Space group</th>
<th>Ward et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.343</td>
<td>$Fm3m$</td>
<td>5.3565</td>
</tr>
<tr>
<td>1.5</td>
<td>5.3428</td>
<td>$Fm3m$</td>
<td>5.3475</td>
</tr>
<tr>
<td>1.78</td>
<td>5.3431</td>
<td>$Fm3m$</td>
<td>5.3481</td>
</tr>
<tr>
<td>2</td>
<td>5.3431</td>
<td>$Fm3m$</td>
<td>5.349</td>
</tr>
<tr>
<td>2.15</td>
<td>5.3463</td>
<td>$Fm3m$</td>
<td>5.3516</td>
</tr>
<tr>
<td>2.18</td>
<td>5.3478</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
<tr>
<td>2.3</td>
<td>5.3478</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
<tr>
<td>2.36</td>
<td>5.36</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
<tr>
<td>2.42</td>
<td>5.36</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
<tr>
<td>2.5</td>
<td>5.36</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
<tr>
<td>2.8</td>
<td>5.355</td>
<td>$Fm3m$</td>
<td>5.3578</td>
</tr>
</tbody>
</table>

Fig. 6.6 Partial phase diagram for the neptunium-hydrogen system. Reprinted from Ward et al. (1987) with permission from Elsevier Science.
Neptunium oxides

- Two known anhydrous oxides
 - Np_2O_5 and NpO_2
- NpO_2
 - From thermal decomposition of a range of Np compounds
 - Isostructural with other actinides
 - Fluorite lattice parameter
 - Stable over a range of temperatures
 - Phase change from fcc to orthorhombic at 33 GPa
 \rightarrow Stable to 2.84 MPa and 673 K
- Np_2O_5
 - From thermal decomposition of $\text{NpO}_3\cdot\text{H}_2\text{O}$ or $\text{NpO}_2\text{OH}_{(am)}$
 - Np_2O_5 decomposes to NpO_2 from 693 K to 970 K
Fig. 6.7 Phase relation of the neptunium–oxygen system. Reprinted from Richer and Sari (1987), with permission from Elsevier Science.
Np hydroxides

- Np(IV)
 - Hydroxides and oxide hydrates
 - Debate on data and stability of compounds
- Np(V)
 - Precipitation with base
 - Some changes observed with aging of material
 - Absorbance spectroscopy changes
- Np(VI)
 - Base to solutions of Np(VI)
 - Oxidation of Np(V) in molten LiNO₃/KNO₃ with O₃
 - Addition of O₃ to an aqueous solution NpO₂ClO₄ at pH 5 at 363 K
 - NpO₂(OH)₂
 * Different XRD and IR in the literature
- Np(VII)
 - Precipitated with base around pH 10
 - Questions on form of precipitate
 * NpO₂(OH)₃ or NpO₃(OH)
 - Based on titration of hydroxide
 - From reaction of O₃ with Np(V) hydroxide
Table 6.5 Thermodynamic properties of neptunium oxides and hydrated oxides at 298.15 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\Delta_f H_m^o$ (kJ mol$^{-1}$)</th>
<th>S_m^o (J K$^{-1}$ mol$^{-1}$)</th>
<th>$\Delta_f G_m^o$ (kJ mol$^{-1}$)</th>
<th>C_{pm}^o (J K$^{-1}$ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NpO$_2$</td>
<td>-1074.0 ± 2.5</td>
<td>80.3 ± 0.4</td>
<td>-1021.731 ± 2.514</td>
<td>66.24 ± 0.5</td>
</tr>
<tr>
<td>Np$_2$O$_5$</td>
<td>-2162.7 ± 9.5</td>
<td>174 ± 20</td>
<td>-2031.6 ± 11.2</td>
<td>128.6 ± 5</td>
</tr>
<tr>
<td>NpO$_3$·H$_2$O</td>
<td>-1377 ± 5</td>
<td>129 ± 27</td>
<td>-1239.0 ± 6.1</td>
<td>120 ± 20</td>
</tr>
<tr>
<td>NpO$_2$·OH (am, fresh)</td>
<td>-1222.9 ± 5.5</td>
<td>60 ± 27</td>
<td>-1114.7 ± 5.7</td>
<td>86 ± 20</td>
</tr>
<tr>
<td>NpO$_2$·OH (am, aged)</td>
<td>70 ± 28</td>
<td></td>
<td>-1118.1 ± 6.3</td>
<td></td>
</tr>
<tr>
<td>NpO$_2$· (hyd,am)</td>
<td></td>
<td></td>
<td>-957.3 ± 8.0</td>
<td></td>
</tr>
</tbody>
</table>
Np ternary oxides

- Prepared from reaction of NpO$_2$ with metal oxides or precipitation from alkaline solutions
- Np(V) ternary oxides
 - Li and Na compounds
 - Heating Np(VI) Li and Na oxides under Ar with NpO$_2$
- Np(VI) ternary oxides
 - Prepared from NpO$_2$ with metal oxides under O$_2$
 - Isostructural with uranium compounds
- Np(VII) ternary oxides
 - Range of compounds
 → XNpO$_6$ based compounds
 * X=Li$_5$, Ba$_2$Li
 → XNpO$_5$
 * X=Rb$_3$, K$_3$, Cs$_3$
 → XNpO$_4$
 * X=Cs, Rb, and K
 - No clear definition of structure, literature includes monclininc
 - Some compounds contain both Np(VI) and Np(VII)
 → Absorption spectra in dilute NaOH
Np halides

- Fluorides
 - NpF$_3$, NpF$_4$, NpF$_5$, and NpF$_6$
 - Prepared from reactions with HF at 773 K
 - NpO$_2$ + 1/2H$_2$ + 3HF \rightarrow NpF$_3$ + 2H$_2$O
 - NpF$_3$ + 1/4O$_2$ + HF \rightarrow NpF$_4$ + 1/2H$_2$O
 - NpO$_2$ + 4HF \rightarrow NpF$_4$ + 2H$_2$O
 - 10NpF$_6$ + I$_2$ \rightarrow 10NpF$_5$ + 2IF$_5$
 * Other route where Np(VI) is reduced
 - NpF$_6$ is volatile
 - Melting point at 327.8 K
 * Higher vapor pressure than U and Pu compound
 - Can form Np(V) species upon reaction with NaF
 * NpF$_6$ + 3NaF \leftrightarrow Na$_3$NpF$_8$ + 1/2F$_2$
 - U will stay as hexavalent compound
 - Range of monovalent species with Np fluorides
 - Synthesis similar to U compound
 - NpO$_2$F$_2$ intermediate species
 - KrF$_2$ used as fluorinating agent for some synthetic routes
Np halides

Table 6.7 Crystal structure and lattice constants of selected neptunium halide complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Symmetry</th>
<th>a_0 (Å)</th>
<th>b_0 (Å)</th>
<th>c_0 (Å)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs_2NpCl$_6$</td>
<td>trigonal</td>
<td>7.46</td>
<td></td>
<td></td>
<td>6.03</td>
</tr>
<tr>
<td>Li$_4$NpF$_8$</td>
<td>orthorhombic</td>
<td>9.91 ± 0.01</td>
<td>9.83 ± 0.01</td>
<td>5.98 ± 0.01</td>
<td>Jove and Cousson (1977)</td>
</tr>
<tr>
<td>Cs$_2$NpBr$_6$</td>
<td>cubic</td>
<td>11.082 ± 0.01</td>
<td></td>
<td></td>
<td>Magette and Fuger (1977)</td>
</tr>
<tr>
<td>(NH$_4$)$_2$Np3F${13}$</td>
<td>orthorhombic</td>
<td>7.298 ± 0.005</td>
<td>7.942 ± 0.005</td>
<td>8.392 ± 0.005</td>
<td>Abazli et al. (1979)</td>
</tr>
<tr>
<td>CsNpO$_2$Cl$_5$(H$_2$O)</td>
<td>monoclinic</td>
<td>11.71 ± 0.02</td>
<td>6.99 ± 0.02</td>
<td>8.76 ± 0.02</td>
<td>Tomilin et al. (1986)</td>
</tr>
<tr>
<td>Cs$_2$NaNpCl$_6$</td>
<td>cubic</td>
<td>10.9065</td>
<td></td>
<td></td>
<td>Schoebrechts et al. (1989)</td>
</tr>
</tbody>
</table>

- **Oxyfluorides**
 - From the reaction of oxides with HF at elevated temperatures or reaction of Np fluorides with H$_2$O
 - Compounds not extensively studies
 - NpO$_2$F, NpOF$_3$, NpO$_2$F$_2$, NpOF$_4$
Np halides

- **NpCl\(_4\)**
 - From the reaction of NpO\(_2\) with CCl\(_4\)
 - Addition of H\(_2\) yields NpCl\(_3\)
 - Similar to U reactions
 - Several melting point reported
 - Heating for NpOCl\(_2\)
- **NpBr\(_4\)**
 - NpO\(_2\) with AlBr\(_3\)
 - Reaction of elements
 - Same for AlI\(_3\) for NpI\(_3\)
- Complexes for with Group 1 and Group 2
- Synthesis reactions similar to U species
- Measured data on Np compounds limited
<table>
<thead>
<tr>
<th>Compound</th>
<th>$\Delta_f H_m^\circ$ (kJ mol$^{-1}$)</th>
<th>S_m° (J K$^{-1}$ mol$^{-1}$)</th>
<th>$\Delta_f G_m^\circ$ (kJ mol$^{-1}$)</th>
<th>$C_{p,m}^\circ$ (J K$^{-1}$ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NpF$_3$</td>
<td>-1529.0 ± 8.3</td>
<td>130.6 ± 3.0</td>
<td>-1460.5 ± 8.3</td>
<td>94.2 ± 3.0</td>
</tr>
<tr>
<td>NpF$_4$</td>
<td>-1874.0 ± 16</td>
<td>148 ± 3</td>
<td>-1783.8 ± 16.0</td>
<td>116.1 ± 4.0</td>
</tr>
<tr>
<td>NpF$_5$</td>
<td>-1941.0 ± 25.0</td>
<td>200.0 ± 15.0</td>
<td>-1834.4 ± 25.4</td>
<td>132.8 ± 8.0</td>
</tr>
<tr>
<td>NpF$_6$</td>
<td>-1970.0 ± 20.0</td>
<td>229.1 ± 0.5</td>
<td>-1841.9 ± 20.0</td>
<td>167.4 ± 0.4</td>
</tr>
<tr>
<td>NpO$_2$F$_2$</td>
<td></td>
<td></td>
<td></td>
<td>103.2</td>
</tr>
<tr>
<td>Na$_3$NpF$_8$</td>
<td>-3514.0 ± 21.0</td>
<td>369.0 ± 12.0</td>
<td>-3521.2 ± 21.3</td>
<td>272.3 ± 12.0</td>
</tr>
<tr>
<td>NpCl$_3$</td>
<td>-896.8 ± 3.0</td>
<td>165.2 ± 6.0</td>
<td>-829.8 ± 3.0</td>
<td>101.9 ± 4.0</td>
</tr>
<tr>
<td>NpCl$_4$</td>
<td>-984.0 ± 1.8</td>
<td>196 ± 5</td>
<td>-895.6 ± 3.0</td>
<td>122.0 ± 6.0</td>
</tr>
<tr>
<td>NpOCl$_2$</td>
<td>-1030.0 ± 8.0</td>
<td>143.5 ± 5.0</td>
<td>-960.6 ± 8.1</td>
<td>95.0 ± 4.0</td>
</tr>
<tr>
<td>Cs$_2$NpCl$_6$</td>
<td>-1976.2 ± 1.9</td>
<td>410.0 ± 15.0</td>
<td>-1833.0 ± 4.9</td>
<td></td>
</tr>
<tr>
<td>Cs$_3$NpO$_2$Cl$_4$</td>
<td>-2449.1 ± 4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs$_2$NpO$_2$Cl$_4$</td>
<td>-2056.1 ± 5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs$_2$NaNpCl$_6$</td>
<td>-2217.2 ± 3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpBr$_3$</td>
<td>-730.2 ± 2.9</td>
<td>200 ± 6</td>
<td>-705.5 ± 3.8</td>
<td>103.8 ± 6.0</td>
</tr>
<tr>
<td>NpBr$_4$</td>
<td>-771.2 ± 1.8</td>
<td>233 ± 5</td>
<td>-737.8 ± 3.5</td>
<td>128.0 ± 4.0</td>
</tr>
<tr>
<td>NpOBr$_2$</td>
<td>-950.0 ± 11.0</td>
<td>160.8 ± 4.0</td>
<td>-906.9 ± 11.1</td>
<td>98.2 ± 4.0</td>
</tr>
<tr>
<td>Cs$_2$NpBr$_6$</td>
<td>-1682.3 ± 2.0</td>
<td>469.0 ± 10.0</td>
<td>-1620.1 ± 3.6</td>
<td></td>
</tr>
<tr>
<td>NpI$_3$</td>
<td>-512.4 ± 2.2</td>
<td>218 ± 5</td>
<td>-512.5 ± 3.7</td>
<td>110.0 ± 8.0</td>
</tr>
</tbody>
</table>
Other Np compounds

- Range of compounds similar to U, especially for synthesis
- Np sulfides and oxysulfides
 - NpS, NpS₃, Np₂S₅, Np₃S₅, Np₂S₃, Np₃S₄
 - Range of synthetic methods, similar to U
 * NpS
 - from Np₂S₃ and Np at 1873
 - Heating Np and S
 - Isostructural with U and Pu
 - NpOS, Np₄O₄S, Np₂O₅
 - NpO₂ used in synthesis of mixed species
- Np nitrides
 - NpN
 - from NH₃ and NpH₃
 - Np metal with N₂ and H₂ mixture
 - Carbothermic reduction of NpO₂ in N₂
 - Similar to UN and PuN
 * Dissolves in acid, relatively inert toward water
 * Some data (heat capacity)
- Limited data on Np carbides
 - NpC, Np₂C₃ and NpC₂
Np coordination compounds

- Interests driven from different Np oxidation states and systematic studies of actinides
- Np$^{3+}$
 - Very little data
 - Instable in aqueous solutions under air
 - Trivalent state stabilized by sodium formaldehyde sulfoxylate ($\text{NaHSO}_2\cdot\text{CH}_2\text{O}\cdot2\text{H}_2\text{O}$)
 - Formation of oxalate and salicylate species
 * 2 Np, 3 ligands
 * No O$_2$ in synthesis
- Np$^{4+}$
 - $\text{Et}_4\text{NNp(NCS)}_8$
 - Isostructural with U complex
 - Range of nitrate compounds
- Np(V)
 - Exhibit cation-cation interaction
 - $\text{Na}_4(\text{NpO}_4)_2\text{C}_{12}\text{O}_{12}$
 - Dissolve neptunium hydroxide in solution with mellitic acid
 - Adjust to pH 6.5 with base
 - Slowly evaporate
Np coordination compounds

• Np(VI)
 ▪ Some simple synthesis
 → Oxalic acid to Np(VI) solutions
 * Reduction of Np over time
 → Ammonium carbonate species
 * Excess (NH₄)₂CO₃ to nitrate solutions of Np(VI)

• Np(VII)
 ▪ Some disagreement on exact species
 → Mixed species with Co, Li, NH₃ and OH
Table 6.9 Lattice parameters of selected neptunium coordination compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Symmetry</th>
<th>Space group</th>
<th>Lattice constants</th>
<th>Angle (deg)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Np(IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np₂(C₂O₄)₃·ₙH₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np₂(C₆H₅₃O₃)₃·ₙH₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np₂[C₆H₄(OH)COO]₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np(VI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Net₄)Np(NCS)₈</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoNp₂F₁₀·8H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuNp₂F₁₀·6H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpCl₂·P(i-C₄H₉)₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpCl₂CH₃CON(i-C₃H₇)₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpCl₄·2.5HCON(CH₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpCl₄·3.5P(CH₃)(C₆H₅)₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np(NO₃)·C₁₀H₁₀N₂(NO₃)·2H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C₁₀H₁₀N₂)[NP(NO₃)]·2H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np(V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₄(NpO₄)₂C₁₂O₁₂·8H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NpO₄)₂CH₅(CO₂)₂·1H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NpO₄)₂CH₂(CO₂)₂·3H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- Mefod’eva and Gel’mar (1971)
- Mefod’eva and Gel’mar (1971)
- Mefod’eva and Gel’mar (1971)
- Al-Kazzaz et al. (1972)
- Cousson et al. (1985)
- Cousson et al. (1985)
- Bagnall et al. (1985)
- Grigor’ev et al. (1986a)
- Grigor’ev et al. (1987)
- Grigor’ev et al. (1993b)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Crystal System</th>
<th>Space Group</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α (°)</th>
<th>β (°)</th>
<th>γ (°)</th>
<th>V (Å³)</th>
<th>Density (g cm⁻³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NpO₂)₂CH₂(CO₂)₃·4H₂O</td>
<td>monoclinic</td>
<td>P₂₁/n</td>
<td>8.84</td>
<td>15.475</td>
<td>9.07</td>
<td>114.51</td>
<td></td>
<td></td>
<td></td>
<td>Krot et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>NH₄NpO₂CH₂(CO₂)₂</td>
<td></td>
<td>P₂₁/c</td>
<td>7.703</td>
<td>13.02</td>
<td>7.704</td>
<td>111.08</td>
<td></td>
<td></td>
<td></td>
<td>Krot et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>CsNpO₂CH₂(CO₂)₂</td>
<td></td>
<td>P₂₁/m</td>
<td>9.184</td>
<td>13.636</td>
<td>7.45</td>
<td>101.97</td>
<td></td>
<td></td>
<td></td>
<td>Krot et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>NaNpO₂CH₃(CO₂)₂·2H₂O</td>
<td></td>
<td>P₂₁/n</td>
<td>12.935</td>
<td>7.645</td>
<td>7.968</td>
<td>97.09</td>
<td></td>
<td></td>
<td></td>
<td>Krot et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>NpO₅OOCH·H₂O</td>
<td></td>
</tr>
<tr>
<td>NpO₅OOCCH₃·H₂O</td>
<td></td>
</tr>
<tr>
<td>NpO₂SO₃NH₂·H₂O</td>
<td></td>
</tr>
<tr>
<td>Cs[NpO₂(SO₄)₂]·2H₂O</td>
<td></td>
</tr>
<tr>
<td>[Co(NH₃)₆][NpO₂(SO₄)₂]·2H₂O</td>
<td></td>
</tr>
<tr>
<td>[Co(NH₃)₆][H₂O₃][NpO₂(SO₄)₃]</td>
<td></td>
</tr>
<tr>
<td>(NpO₂)₂SO₄·H₂O</td>
<td></td>
</tr>
<tr>
<td>Cs₄(NpO₂)₂Cl₆(NO₃)·H₂O</td>
<td></td>
</tr>
<tr>
<td>Np(Ⅵ)</td>
<td></td>
</tr>
<tr>
<td>NpO₂C₅O₄</td>
<td></td>
</tr>
<tr>
<td>(NH₄)NpO₂(CO₃)₃</td>
<td></td>
</tr>
<tr>
<td>Np(Ⅶ)</td>
<td></td>
</tr>
<tr>
<td>LiCo(NH₃)₆Np₂O₈(OH)₂·2H₂O</td>
<td>monoclinic</td>
<td>C₂/c</td>
<td>10.739</td>
<td>10.45</td>
<td>15.013</td>
<td>116.38</td>
<td></td>
<td></td>
<td></td>
<td>Burns et al. (1973)</td>
<td></td>
</tr>
<tr>
<td>NaCo(NH₃)₆Np₂O₈(OH)₂·2H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burns et al. (1973)</td>
<td></td>
</tr>
<tr>
<td>Co(NH₃)₆NpO₂(OH)₂·2H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burns et al. (1973)</td>
<td></td>
</tr>
<tr>
<td>CsNpO₂Cl₃(H₂O)</td>
<td>monoclinic</td>
<td>P₂₁(P₂₁/n)</td>
<td>11.71</td>
<td>6.99</td>
<td>8.76</td>
<td>93.1</td>
<td></td>
<td></td>
<td></td>
<td>Tomilin et al. (1986)</td>
<td></td>
</tr>
</tbody>
</table>

Mefod'eva et al. (1969)
Marquart et al. (1983)

7-45
Np Organometallic compounds

- Mainly cyclopentadienyl and cyclooctatetraenyl compounds
- Np cyclopentadienyl
 - Reduction of Np$^{4+}$ complex with Na
 \[\text{Np(C}_5\text{H}_5\text{)}_3\text{Cl} + \text{Na} \rightarrow \text{Np(C}_5\text{H}_5\text{)}_3\cdot3\text{THF} + \text{NaCl} \]
 - Difficult to remove THF
 - Heating and vacuum
- Np$^{4+}$
 - NpCl$_4$+4KC$_5$H$_5$ \rightarrow Np(C$_5$H$_5$)$_4$+4KCl
 - Dissolves in benzene and THF
 - Less sensitive to H$_2$O and O$_2$ than trivalent Pu and Am compound
- Halide salt of Np compound reported
 - NpX$_4$ + 3 KC$_5$H$_5$ \rightarrow Np(C$_5$H$_5$)$_3$X +3KX
 - Can use as starting material and replace X with ligands
 - Inorganic (other halides); NC$_4$H$_4$−, N$_2$C$_3$H$_3$−, CH$^-$
Np Organometallic compounds

- Cyclooctatetraene compounds
 - $\text{NpCl}_4 + 2\text{K}_2(\text{C}_8\text{H}_8) \rightarrow \text{Np}(\text{C}_8\text{H}_8)_2 + 4\text{KCl}$
 - Precipitated by addition of water
 - Isomorphous with U and Pu compounds
 * Air sensitive
 - Trivalent compound also prepared with NpX$_3$ as starting material
 * Isostructural with KPu(\text{C}_8\text{H}_8)_2
 orthorhombic unit cell

- Reactions with other K complexes
 - $\text{K}_2\text{RC}_8\text{H}_7$; R=ethanol, butanol

- Reactions with NpI$_3$
 - Formation of mono- and diMeCP
Np atomic properties

- Ground state configuration $[\text{Rn}]5f^46d^17s^2$
- Term symbol $^6L_{11/2}$

<table>
<thead>
<tr>
<th></th>
<th>$K_{\alpha 1}$</th>
<th>$K_{\alpha 2}$</th>
<th>$K_{\beta 1}$</th>
<th>$L_{\alpha 1}$</th>
<th>$L_{\alpha 2}$</th>
<th>$L_{\beta 1}$</th>
<th>$L_{\beta 2}$</th>
<th>$L_{\gamma 1}$</th>
<th>$M_{\alpha 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>101,059.</td>
<td>97,069.</td>
<td>114,234.</td>
<td>13,944.1</td>
<td>13,759.7</td>
<td>17,750.2</td>
<td>16,840.0</td>
<td>20,784.8</td>
<td>—</td>
</tr>
</tbody>
</table>
Neptunium Np I

<table>
<thead>
<tr>
<th>5f(^5)7s(^2)</th>
<th>6(^{H5/2})</th>
<th>2 831</th>
<th>5f(^4) 6d(^2) 7s(^2)</th>
<th>6(^{L11/2})</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5f(^4)7s(^2)7p</td>
<td>(^{5})I(_4), (^{2})P(_1/2)(^9/2)</td>
<td>11 940</td>
<td>5f(^4) 6d(^2) 7s</td>
<td>8(^{M11/2})</td>
<td>7 112</td>
</tr>
<tr>
<td>5f(^5)6d7s</td>
<td>8(^{K7/2})</td>
<td>13 384</td>
<td>5f(^5) 7s 7p</td>
<td>8(^{I5/2})</td>
<td>18 655</td>
</tr>
<tr>
<td>5f(^4)6d7s7p</td>
<td>8(^{M11/2})</td>
<td>14 339</td>
<td>5f(^4) 6d(^3)</td>
<td>8(^{M11/2})</td>
<td>20 000 ± 4 000</td>
</tr>
<tr>
<td>5f(^3)6d(^2)7s(^2)</td>
<td>6(^{M13/2})</td>
<td>20 051</td>
<td>5f(^5) 6d 7p</td>
<td>8(^{L9/2})</td>
<td>25 500 ± 2 000</td>
</tr>
<tr>
<td>5f(^3)6d(^3)7s</td>
<td>8(^{M11/2})</td>
<td>24 500 ± 2 000</td>
<td>5f(^3) 6d 7s(^2) 7p</td>
<td>6(^{M13/2})</td>
<td>31 000 ± 2 000</td>
</tr>
<tr>
<td>5f(^5)6d(^2)</td>
<td>8(^{L9/2})</td>
<td>27 000 ± 4 000</td>
<td>5f(^4) 7s 7p(^2)</td>
<td>8(^{K7/2})</td>
<td>32 896</td>
</tr>
<tr>
<td>5f(^4)6d(^2)7p</td>
<td>8(^{N13/2})</td>
<td>28 551</td>
<td>5f(^3) 6d(^2) 7s 7p</td>
<td>8(^{N13/2})</td>
<td>33 500 ± 1 000</td>
</tr>
<tr>
<td>5f(^5)7p(^2)</td>
<td>8(^{I5/2})</td>
<td>36 000 ± 2 000</td>
<td>5f(^2) 6d(^4) 7s</td>
<td>8(^{K7/2})</td>
<td>35 000 ± 3 000</td>
</tr>
<tr>
<td>5f(^2)6d(^3)7s7p</td>
<td>8(^{M11/2})</td>
<td>44 000 ± 6 000</td>
<td>5f(^3) 6d(^3) 7p</td>
<td>8(^{N13/2})</td>
<td>41 000 ± 3 000</td>
</tr>
</tbody>
</table>
Np solution chemistry

- Np exists from 3+ to 7+
 - Stable oxidation state favored by acidity, ligands, Np concentration
- 5+ and 6+ forms dioxocations
- Redox potentials
 - Some variations in values
 - Due to slow kinetics from Np-O bond making and breaking
 - Critical evaluation based on specific ion interaction theory
 - Specific ion interaction theory uses an extends Debye-Hückel term for activity
 * long range Debye-Hückel
 * Short range ion interaction term

\[\log \gamma_i = -Z^2D + \varepsilon_{ij}\mu \]

\[D = \frac{0.5107\sqrt{\mu}}{1 + 1.5\sqrt{\mu}} \]

\[\log \beta(\mu) = \log \beta(0) + \Delta Z^2_i D - \Delta \varepsilon_{ij}\mu \]
Np redox

- Basic solutions
 - Difficulty in understanding data
 → Chemical forms of species
- Determine ratios of each redox species from XANES
 - Use Nernst equation to determine potentials

Fig. 6.8 XANES spectra from the pure Np(III), Np(IV), Np(V), and Np(VI) ions in HClO₄; reprinted from Soderholm et al. (1999) with permission from American Chemical Society.
Redox data

\[
\begin{align*}
\text{acidic solution} & : NpO_3^+ \quad 2.04 \quad NpO_2^{2+} \quad 1.24 \quad NpO_2^{2+} \quad 0.66 \quad Np^{4+} \quad 0.18 \quad Np^{3+} \quad -4.7 \quad Np^{2+} \quad -0.3 \quad Np \\
\text{basic solution} & : NpO_5^{3-} \quad 0.58 \quad NpO_2(OH)^2_2 \quad 0.6 \quad NpO_2(OH)^1_2 \quad 0.3 \quad NpO_2^{2-} \quad -2.1 \quad Np(OH)^3_- \quad -2.2 \quad Np
\end{align*}
\]

\[
\begin{align*}
\text{acidic} & : NpO_2^{2+} \quad +1.159 \quad \longrightarrow \quad NpO_2^{1+} \quad +0.604 \quad \longrightarrow \quad Np^{4+} \quad +0.219 \quad \longrightarrow \quad Np^{3+} \quad -1.772 \\
\text{basic} & : NpO_5^{3-} \quad +0.58 \quad \longrightarrow \quad NpO_2(OH)^2_2 \quad +0.6 \quad \longrightarrow \quad NpO_2OH \quad +0.3 \quad \longrightarrow \quad NpO_2 \quad -2.1 \quad \longrightarrow \quad Np(OH)^3_- \quad -2.2 \quad \longrightarrow \quad Np
\end{align*}
\]
Np solution chemistry

- Use of Latimer diagram to construct Frost diagram
- Plot of nE versus oxidation number
 - \(nE = -\Delta G/F \)
 - Most stable oxidation state is lowest nE value
 - Slope related to potential
- Can construct Frost diagrams from Latimer diagram
 - Need to consider electrons transferred in reactions

- Electrochemical behavior of Np
- Voltammetric behavior
 - Glassy carbon electrode in acid or acetate buffer
 - 1 e\(^-\) peaks at NpO\(_2\)\(^{2+}/\)NpO\(_2\)\(^+\) and Np\(^4+/\)Np\(^3+\)
 - Used to determine standard potentials
Np solution chemistry

• Disproportionation
 ▪ NpO$_2^+$ forms Np$^{4+}$ and NpO$_2^{2+}$
 → Favored in high acidity and Np concentration
 ▪ 2NpO$_2^+$ +4 H$^+$ \leftrightarrow Np$^{4+}$ + NpO$_2^{2+}$ + 2H$_2$O
 ▪ K for reaction increased by addition of complexing reagents
 → K=4E-7 in 1 M HClO$_4$ and 2.4E-2 in H$_2$SO$_4$
 * Suggested reaction rate
 ➢ -d[NpO$_2^+$]/dt=k[NpO$_2^+$][H$^+$]2

• Control of redox species
 ▪ Important consideration for experiments
 ▪ LANL write on methods
Np solution chemistry

- Oxidation state control
 - Redox reagents
 - Adjustment from one redox state to another
 - Best for reversible couples
 * No change in oxo group
 * If oxo group change occurs need to know kinetics
 - Effort in PUREX process for controlled separation of Np focused on organics
 * HAN and derivates for Np(VI) reduction
 * Rate 1st order for Np in excess reductant
 - 1,1 dimethylhydrazine and tert-butylhydrazine selective of Np(VI) reduction over Pu(IV)
<table>
<thead>
<tr>
<th>Oxidation states of neptunium ion</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment</td>
<td>After treatment</td>
</tr>
<tr>
<td>Oxidative treatment</td>
<td>Np(vi)</td>
</tr>
<tr>
<td>Np(III), Np(IV), Np(V)</td>
<td>Np(V)</td>
</tr>
<tr>
<td>Np(III)</td>
<td>Np(IV)</td>
</tr>
<tr>
<td>Np(V), Np(VI)</td>
<td>Np(IV)</td>
</tr>
<tr>
<td>Np(VI)</td>
<td>Np(V)</td>
</tr>
<tr>
<td>Np(IV), Np(V), Np(VI)</td>
<td>Np(III)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductive treatment</td>
<td>Np(IV)</td>
</tr>
<tr>
<td>Np(V), Np(VI)</td>
<td>Np(V)</td>
</tr>
<tr>
<td>Np(VI)</td>
<td>Np(V)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Np solution chemistry

• Electrochemical methods (data for Ag/AgCl)
 ▪ Np(V)/Np(VI) at 1.2 V
 ▪ Np(V)/Np(III) at -0.2 V
 ▪ Np(III)/Np(IV) at 0.4 V
 → Glassy carbon or Pt electrodes

• Ultrasonic oxidation
 ▪ Np(V) to Np(VI) in HNO₃ under Ar
 → Driven by formation of HNO₂
Np solution chemistry

- Applied to Np(III) to Np(VII) and coordination complexes
 - Applied to Np(V) spin-orbit coupling for 5f²
- Absorption in HNO₃
 - Np(IV): 715 nm
 - Np(V): weak band at 617 nm
 - Np(VI): below 400 nm
 → No effect from 1 to 6 M nitric
- Np(VII) only in basic media
 - NpO₆⁵⁻
 → 2 long (2.2 Å) and 4 short (1.85 Å)
 → Absorbance at 412 nm and 620 nm
 * O π→ 5f
 * Number of vibrational states
 → Between 681 cm⁻¹ and 2338 cm⁻¹
- Np(VI)
 - Studies in Cs₂UO₂Cl₄ lattice
 - Electronic levels identified at following wavenumbers (cm⁻¹)
 → 6880, 13277, 15426, 17478, and 19358
 * 6880 cm⁻¹ belongs to 5f¹ configuration
Np solution chemistry

- Np(IV)
 - Absorbance from 300 nm to 1800 nm permitted assignment at 17 excited state transitions
 - IR identified Np-O vibrational bands
 → 825 cm\(^{-1}\)
 - Absorbance in nitrate
 → Variation seen for nitrate due to coordination sphere
Fig. 6.11 The absorption spectra of neptunium ions in 2 M HClO₄ solution: (a) Np(III); (b) Np(IV); (c) Np(V); (d) Np(VI).
Np solution chemistry
Np solution chemistry

- Np hydrolysis
 - Np(IV)>Np(VI)>Np(III)>Np(V)
 - For actinides trends with ionic radius
- Np(III)
 - below pH 4
 - Stable in acidic solution, oxidizes in air
 - Potentiometric analysis for determining K
 - No K_{sp} data
- Np(IV)
 - hydrolyzes above pH 1
 - Tetrahydroxide main solution species in equilibrium with solid
 based on pH independence of solution species concentration
- Np(V)
 - not hydrolyzed below pH 7
- Np(VI)
 - below pH 3-4
- Np(VII)
 - No data available
<table>
<thead>
<tr>
<th>Ion</th>
<th>Method</th>
<th>Temp. (°C)</th>
<th>Medium</th>
<th>Equilibrium constants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Np$^{3+}$</td>
<td>pot</td>
<td>25</td>
<td>0.3 M NaClO$_4$</td>
<td>log*K$_{11} = -7.43 \pm 0.11$</td>
<td>Mefod'eva et al. (1974)</td>
</tr>
<tr>
<td>Np$^{3+}$</td>
<td>sp</td>
<td>25</td>
<td>1.0 M</td>
<td>log*K$_{11} = -1.90$</td>
<td>Paul (1970)</td>
</tr>
<tr>
<td></td>
<td>sol</td>
<td>25</td>
<td>0.0</td>
<td>log*K$_{14} = -9.8 \pm 0.11$</td>
<td>Rai et al. (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{8} = 1.5 \pm 1.0$</td>
<td>Lemire et al. (2001)</td>
</tr>
<tr>
<td>NpO$_2^{3+}$</td>
<td>sol</td>
<td>25</td>
<td>0.1 M NaClO$_4$</td>
<td>NpO$_2$(s) + 4H$^+$ ⇌ Np$^{3+}$ + 2H$_2$O</td>
<td>Neck et al. (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{11} = -11.36 \pm 0.16$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{12} = -23.50 \pm 0.12$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{11} = -11.13 \pm 0.20$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{12} = -23.19 \pm 0.14$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{8} = 4.50 \pm 0.06$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NpO$_2$.OH(s) + H$^+$ ⇌ NpO$_2^{3+}$ + H$_2$O</td>
<td></td>
</tr>
<tr>
<td>NpO$_2^{2+}$</td>
<td>pot</td>
<td>25</td>
<td>1.0 M NaClO$_4$</td>
<td>NpO$_2$ + 2H$^+$ ⇌ NpO$_2^{2+}$ + 2H$_2$O</td>
<td>Cassol et al. (1972a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{11} = -5.17 \pm 0.03$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{22} = -6.68 \pm 0.02$</td>
<td>Kato et al. (1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log*K$_{35} = -18.25 \pm 0.02$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sol</td>
<td>25</td>
<td>0.1 M NaClO$_4$</td>
<td>NpO$_3$.H$_2$O + 2H$^+$ ⇌ NpO$_2^{2+}$ + 2H$_2$O</td>
<td></td>
</tr>
</tbody>
</table>

* K$_{mn}$ is the hydrolysis constant for the equilibrium: mM$^{n+} + n$H$_2$O \rightleftharpoons M$_m$(OH)$_n^{m-n}$ $+$ nH$^+$.
Np hydrolysis

![Graph showing Np hydrolysis](image)

- **[mM]**
- **pH**
Np(III) hydrolysis
Np(IV) hydrolysis
Np(V) hydrolysis
Np(V) hydrolysis
Np(VI) hydrolysis
Np solution complexes

- Range of complexation constants available
- Oxidation state trends same as hydrolysis
- Stability trends for inorganic
 - \(F^- \rightarrow H_2PO_4^- \rightarrow SCN^- \rightarrow NO_3^- \rightarrow Cl^- \rightarrow ClO_4^- \)
 - \(CO_3^{2-} \rightarrow HPO_4^{2-} \rightarrow SO_4^{2-} \)
- \(\text{NpO}_2^+ \) forms cation-cation-cation complexes
 - Fe>In>Sc>Ga>Al
<table>
<thead>
<tr>
<th>Anion</th>
<th>Ion</th>
<th>Method</th>
<th>Temp. (°C)</th>
<th>Medium</th>
<th>Equilibrium constants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride, F^-</td>
<td>Np^{4+}</td>
<td>dis</td>
<td>25</td>
<td>1.0 M HClO₄</td>
<td>$\log^{*} \beta_1 = 4.60 \pm 0.20$</td>
<td>Choppin and Unrein (1976)</td>
</tr>
<tr>
<td></td>
<td>Np^{4+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M HClO₄</td>
<td>$\log^{*} \beta_1 = 4.70 \pm 0.15$</td>
<td>Bagawde et al. (1976)</td>
</tr>
<tr>
<td></td>
<td>clix, red</td>
<td>20</td>
<td>4.0 M HClO₄</td>
<td>$\log^{*} \beta_2 = 4.82 \pm 0.02$</td>
<td>Ahlander and Brandt (1966)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log^{*} \beta_3 = 7.57 \pm 0.15$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log^{*} \beta_4 = 9.85$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log^{*} \beta_5 = 11.15$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log^{*} \beta_6$; Np^{4+} + nHL \rightleftharpoons NpL_{n-}^{4+} + nH^+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O₂⁻</td>
<td>dis</td>
<td>23</td>
<td>1.0 M NaClO₄</td>
<td>$\log K_1 = 1.26 \pm 0.30$</td>
<td>Choppin and Rao (1984)</td>
</tr>
<tr>
<td></td>
<td>O₂⁻</td>
<td>dis</td>
<td>25</td>
<td>2.0 M NaClO₄</td>
<td>$\log K_1 = 0.99 \pm 0.10$</td>
<td>Rao et al. (1979)</td>
</tr>
<tr>
<td></td>
<td>O₂⁻⁺</td>
<td>ise</td>
<td>20</td>
<td>0.1 M NaClO₄</td>
<td>$\log K_1 = 4.18 \pm 0.15$</td>
<td>Sawant et al. (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_2 = 6.96 \pm 0.15$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_3 = 9.64$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_4 = 1.11 \pm 0.20$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_5 = 1.14 \pm 0.40$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_6 = 1.11 \pm 0.10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_{1-}$; NpO₂^{4+} + nHL \rightleftharpoons NpO₂L_{n-}^{4+} + nH^+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride, Cl⁻</td>
<td>Np^{4+}</td>
<td>dis</td>
<td>20</td>
<td>0.5 M HClO₄</td>
<td>$\log K_1 = 0.15 \pm 0.20$</td>
<td>Shilin and Nazarov (1966)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0 M HClO₄</td>
<td>$\log K_1 = -0.04 \pm 0.20$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = -0.04 \pm 0.20$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = -0.05 \pm 0.05$</td>
<td>Patil and Ramakrishna (1975)</td>
</tr>
<tr>
<td></td>
<td>NpO₂^{4+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = -0.42 \pm 0.04$</td>
<td>Rao et al. (1979)</td>
</tr>
<tr>
<td></td>
<td>NpO₂^{2+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M NaClO₄</td>
<td>$\log K_1 = -0.35 \pm 0.40$</td>
<td>Al-Niaimi et al. (1970b)</td>
</tr>
<tr>
<td>Bromide, Br⁻</td>
<td>Np^{4+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = -0.21 \pm 0.01$</td>
<td>Raghavan et al. (1975)</td>
</tr>
<tr>
<td>Iodide, I⁻</td>
<td>Np^{4+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = 0.04 \pm 0.30$</td>
<td>Patil et al. (1981)</td>
</tr>
<tr>
<td>Iodate, IO₃⁻</td>
<td>NpO₂^{3+}</td>
<td>dis</td>
<td>25</td>
<td>2.0 M HClO₄</td>
<td>$\log K_1 = 0.32 \pm 0.30$</td>
<td>Rao et al. (1979)</td>
</tr>
<tr>
<td></td>
<td>NpO₂^{2+}</td>
<td>sp</td>
<td>25</td>
<td>0.3 M HClO₄</td>
<td>$\log K_1 = 0.61 \pm 0.02$</td>
<td>Blokhin et al. (1972)</td>
</tr>
<tr>
<td>Azide, N₃⁻</td>
<td>NpO₂^{3+}</td>
<td>sp</td>
<td>25</td>
<td>5.0 M NaClO₄</td>
<td>$\log K_1 = 1.08$</td>
<td>Musikas and Marteau (1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_2 = 0.77$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\log K_3 = 0.38$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite, NO₂⁻</td>
<td>NpO₂⁻</td>
<td>dis</td>
<td>25</td>
<td>2.0 M NaClO₄</td>
<td>$\log K_1 = -0.05 \pm 0.05$</td>
<td>Rao et al. (1979)</td>
</tr>
<tr>
<td>Nitrate, NO₃⁻</td>
<td>NpO₃⁻</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Np organic solution complexes

• Most data with Np(V)
• Evaluated with spectroscopy
 ▪ Monocarboxylic ligands
 → 1:3 Np:L ratio
 → Complexation constants increase with increasing pKa of ligand
 ▪ Aromatic polycarboxylates
 → Strength based on number of carboxylic acids
Analytical methods

• Environmental levels
 ▪ General levels 1E-15 g/L
 ▪ Elevated levels up to 1E-11 g/L

• Radiometric methods
 ▪ Alpha
 → 2.6E7 Bq/g
 → Isolation from seawater
 * Hydroxide co-precipitation, ion-exchange, LaF₃, solvent extraction with HTTA
 ▪ Liquid scintillation
 ▪ Activation analysis
 → Formation of 238Np
 * 170 barns, 2.117 day half life for 238Np
 * 500 more sensitive than alpha spectroscopy
Soil sample (10 - 40 g)

Leaching (aqua regia, \(^{239}\)Np spike)

Isopropylether extraction (remove Fe)

Np reduction (to Np(IV) with HI)

TOA extraction of Np (IV)

Back-extraction of Np (IV)
with 1 M HCl + 0.1 M HF

Np reduction (Np(IV) with \(\text{NH}_2\text{OH} + \text{HCl}\))

Co-precipitation of Np(IV) with \(\text{LaF}_3\)

Anion-exchange chromatography
8 M HNO\(_3\), Dowex 1 × 8

→ Sample in 8 M HNO\(_3\), wash

→ 8 M HNO\(_3\), wash (U off)

→ 10 M HCl, wash (Th off)

→ 10 M HCl + 0.1 M Hl (Pu off)

4 M HCl (Np elution)

Dissolution in 1 M HNO\(_3\) (20 ml)

\(^{239}\)Np measurement (γ spectrometry)

\(^{237}\)Np measurement (ICP-MS)

Fig. 6.12 Chemical separation scheme for the determination of \(^{237}\)Np by high-resolution ICP-MS. (Yamamoto et al., 1994, with permission from Elsevier Science).
Analytical methods

• Spectrophotometric methods
 ▪ Direct absorbance
 → Detection limit in M (1 cm cell, 0.02 absorbance)
 * Np(III) 5E-4, Np(IV) 1E-4, Np(V) 5E-5, Np(VI) 5E-4
 → Laser induced photoacoustic spectroscopy (LIPAS)
 → Increase factor by over an order of magnitude
 ▪ Indicator dyes
 ▪ Fluorescence
 → New work in tetrachlorides and solids
 → Luminescence at 651 nm and 663 nm from Np in CaF$_2$ at 77 K
• X-ray fluorescence
• Mass spectroscopy
Analytical methods

• Moessbauer spectroscopy
 - ^{237}Np
 \rightarrow 68 ns excited state lifetime
 \rightarrow Isomer shift suitable for analysis of chemical bonds
 \rightarrow Can record radiation spectrum from absorber
 * 60 keV from ^{241}Am
 \rightarrow Shift correlated with oxidation state and number of 5f electrons present
Fig. 6.14 Isomer shifts of Np(IV), (V), (VI), and (VII) compounds.
Fig. 3. 237Np Mössbauer spectra of NpFeGa$_6$ at 10 K.