Molecular Symmetry

• Symmetry impacts
 - Physical properties
 - Reactions
 - Molecular orbitals
 - Electronic structure
 - Molecular vibrations

• Group theory
 - Behavior of molecule based on symmetry

• Symmetry analysis
• Applications of symmetry
• Orbital symmetry
• Vibrational symmetry
Introduction to symmetry analysis

- Symmetry operation
 - Action which molecular symmetry unchanged
 - Rotation through an angle
 - Reflection

- Symmetry element
 - Location of symmetry operation
 - Point
 - Line
 - Plane
 - Operation leaves at least one point in molecule unchanged
 - Point group symmetry
Symmetry analysis

- Identity operation (E)
 - Leaves entire molecule unchanged
 - All molecules have at least this operation
- n fold symmetry axis (Cₙ)
 - 360°/n rotation
 - H₂O
 - * 180°, n=2
 - * C₂
 - NH₃
 - * 120°, n=3
 - * C₃
Symmetry analysis

• Mirror plane (σ)
 ✍️ Vertical (σ_v), horizontal (σ_h) or dihedral (σ_d) to rotation of fold symmetry axis
 ➤ Molecule can have different levels of mirror plane
Symmetry analysis

- Inversion operation (i)
 - Projection through a center point in the molecule
 - Center of an octahedron
 - No AB₄ tetrahedron has a center of inversion
 - Need to differentiate between C₂ and i
Symmetry analysis

- Improper rotation (S_n)
 - consist of two separate operations:
 - n-fold rotation (rotation by $360\degree/n$) about an axis followed by
 - reflection in a plane perpendicular to that axis.
 - Each operation is needed to achieve the proper reflection
 - Individual operation does not result in proper reflection
 - Improper axes are often the most difficult symmetry elements to spot
 - S_1
 - C_1 and σ_h is σ_h
 - S_2
 - C_2 and σ_h is i
Symmetry analysis summary

- Molecule can have a number of symmetry operations
- Each operation has associated element

<table>
<thead>
<tr>
<th>Symmetry element</th>
<th>Symmetry operation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Fold symmetry axis</td>
<td>Identity*</td>
<td>E</td>
</tr>
<tr>
<td>Mirror plane</td>
<td>Rotation by $2\pi/n$</td>
<td>C_n</td>
</tr>
<tr>
<td>Center of inversion</td>
<td>Reflection</td>
<td>σ</td>
</tr>
<tr>
<td>n-Fold axis of</td>
<td>Inversion</td>
<td>i</td>
</tr>
<tr>
<td>improper rotation†</td>
<td>Rotation by $2\pi/n$ followed by reflection</td>
<td>S_n</td>
</tr>
<tr>
<td></td>
<td>perpendicular to rotation axis</td>
<td></td>
</tr>
</tbody>
</table>

*The symmetry element can be thought of as the whole of space.
†Note the equivalences $S_1 = \sigma$ and $S_2 = i$.

4-7
Point Groups

- Point group can be assigned to each element
 - Based on symmetry elements possessed by molecule and compare to element that define group
 - Strong relationship between molecule geometry and point group

 ➤ Linear with center $D_{\infty h}$
 ➤ Linear no center $C_{\infty v}$

* See previous lecture for more information
Point Groups

- \(T_d \)

- \(O_h \)

- \(I_h \)
<table>
<thead>
<tr>
<th>Point group</th>
<th>Symmetry elements</th>
<th>Shape</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>E</td>
<td></td>
<td>SiBrClF</td>
</tr>
<tr>
<td>C_2</td>
<td>E, C_2</td>
<td></td>
<td>H_2O_2</td>
</tr>
<tr>
<td>C_s</td>
<td>E, σ</td>
<td></td>
<td>NHF$_3$</td>
</tr>
<tr>
<td>C_{2v}</td>
<td>E, C_2, σ_v, σ</td>
<td></td>
<td>H_2O, SO$_2$Cl$_2$</td>
</tr>
<tr>
<td>C_{3v}</td>
<td>$E, 3\sigma_v$</td>
<td></td>
<td>NH$_3$, PCl$_3$, POCl$_3$</td>
</tr>
<tr>
<td>C_{nv}</td>
<td>$E, C_{nv}, 2\sigma_v, \cdots \infty \sigma_v$</td>
<td></td>
<td>CO, HCl, OCS</td>
</tr>
<tr>
<td>D_{2h}</td>
<td>$E, C_2(x, y, z), \sigma(xy, yz, zx), i$</td>
<td></td>
<td>N$_2$O$_4$, B$_2$H$_6$</td>
</tr>
<tr>
<td>D_{3h}</td>
<td>$E, C_3, 3\sigma_v, \sigma_h, S_3$</td>
<td></td>
<td>BF$_3$, PCl$_3$</td>
</tr>
<tr>
<td>D_{4h}</td>
<td>$E, C_4, C_2, 2\sigma_v, 2\sigma_d, i, S_4, \sigma_h, 2\sigma_v, 2\sigma_d$</td>
<td></td>
<td>XeF$_4$, trans-MA$_2$B$_2$</td>
</tr>
<tr>
<td>D_{5h}</td>
<td>$E, 5\sigma_v, \infty \sigma_v, \sigma_h, 5\sigma_d, \cdots \infty C_2$</td>
<td></td>
<td>H$_2$, CO$_2$, C$_4$H$_6$</td>
</tr>
<tr>
<td>T_d</td>
<td>$E, 3C_2, 4S_4, 6\sigma_d, 4S_4$</td>
<td></td>
<td>CH$_4$, SiCl$_4$</td>
</tr>
<tr>
<td>O_h</td>
<td>$E, 6C_2, 4S_4, 3C_4, 4S_6, 3S_6, i, 3\sigma_d, 6\sigma_d$</td>
<td></td>
<td>SF$_6$</td>
</tr>
</tbody>
</table>

*Not all the elements of each group are listed, but enough are listed for unambiguous assignments to be made.
Point Groups

- **H₂O point group**
 - Know it is C₂ᵥ from table
 - Symmetry elements
 - E, C₂ (180° rotation), 2 vertical mirror planes (σᵥ)
 * E, C₂, σᵥ, σᵥ'

- **NH₃ point group**
 - C₃ᵥ point group
 - Elements
 - E, C₃ (each N-H), three vertical mirror plane through each N-H (3σᵥ)
 * E, C₃, 3σᵥ

- Apply to identification tree
Application of symmetry

• Construction and labeling of molecular orbitals
• Molecular properties
 ➕ Polarity
 ➕ Chirality
• Polar
 ➕ Permanent dipole
 ➕ Cannot set up dipole on molecule with symmetry elements that exchange dipole over molecule
 ➕ Cannot have dipole with following symmetry elements
 * Center of inversion
 * Perpendicular to mirror plane or axis of rotation
 ➕ D point groups, T_d, O_h, I_h do not have dipoles
Polar molecules

- Consider Ruthenocene
 - Is point group D or cubic?
 - What is the point group?
 - C_5, C_2 perpendicular with C_5, σ_h mirror plane
 - D_{5h}
 - Molecule is non-polar
Chiral Molecules

- **Chirality**
 - Cannot be superimposed on mirror image
 - Enantiomers
 - Optically active
 - Rotate light
 - Chiral molecules do not have S_n symmetry element
 - D_{nd}, D_{nh}, T_d, O_h
Orbitals and symmetry

• Correlate symmetry with orbital characteristics

• Character tables

 ✄ Sigma
 ➤ No sign change with rotation
 * 1 on table

 ✄ Pi
 ➤ Sign change with rotation
 * -1 on table

 ✄ p\textsubscript{z} has sigma symmetry
Orbital Symmetry

- Symmetry adapted linear combination
 - SALC
 - Combination of orbitals with symmetry considerations
 - HN₃
 \[\phi 1s_a + \phi 1s_b + \phi 1s_c \]
Character table

Table 4.3 The C_{3v} character table*

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

z, $x^2 + y^2, z^2$, (x, y), $(x^2 - y^2, xy)$, (zx, yz), R_z, (R_x, R_y)

*(a, b) denotes a degenerate pair of orbitals, the characters in the table refer to the symmetry of the pair jointly. The symbol R_q denotes a rotation around the axis q.

- Orbitals are symmetry types
- Symmetry based on center point of molecule
- Angular variation of orbitals represented by directions
- Element operation
 - E gives degeneracy $(a, b; e; t)$
 - 1, -1 symmetry
 - Only symmetry similar orbitals can overlap
 - Evaluate D_{3h} of BF_3
Character tables

- E and T are sum
 - Can be 0
- Consider H₂O
 - What is the pₗ orbital on O?
 - C₂ changes sign
 - -1
 - σᵥ does not change sign
 - B₁

<table>
<thead>
<tr>
<th>Group</th>
<th>E</th>
<th>C₂</th>
<th>σᵥ(xz)</th>
<th>σᵥ(yz)</th>
<th>h = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂ᵥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2mm)</td>
</tr>
<tr>
<td>A₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>A₂</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>Rz</td>
</tr>
<tr>
<td>B₁</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>x, R₁</td>
</tr>
<tr>
<td>B₂</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>y, R₂</td>
</tr>
</tbody>
</table>
Molecular orbitals

- Based on SALC of atomic orbitals of same symmetry
 - σ and p\textsubscript{z} can combine to form molecular orbital
- Consider H on H\textsubscript{2}O
 - What are the symmetry labels for H1s and which O orbitals overlap?
 - \(\phi_+ = \phi A1s^+ + \phi B1s; \phi_- = \phi A1s^- + \phi B1s \) for H orbitals
 - \(\phi_+ \) for E, C\textsubscript{2}, \(\sigma_v, \sigma_{v'} = 1 \); \(\phi_- \) for C\textsubscript{2}, \(\sigma_v = -1 \), E and \(\sigma_{v'} = 1 \)
 - A\textsubscript{1} and B\textsubscript{2} from table
 - * O\textsubscript{s} and O\textsubscript{pz} orbitals with H \(\phi_+ \) form \(\psi_{a1} \)
 - * O\textsubscript{py} with H \(\phi_- \) form \(\psi_{b2} \)
Construction Molecular orbitals

- Assign point group to molecule
- Look up shapes from SALC
- Arrange SALCs based on energy and number of nodes
 - $s < p < d$
- Combine N SALC into N molecular orbitals
- Estimate energy and compare with data
Molecular Vibration

- **Polar molecules IR active**
 - H_2O, HCl, NO
 - Most molecules will absorb IR
- **Homonuclear species IR inactive**
 - O_2, N_2, Cl_2

- **Vibrations**
 - **Stretching**
 - Symmetric and asymmetric
 - **Bending**
 - Rocking
 - Scissoring
 - Wagging
 - Twisting
Theory

- Only some modes IR active
- Model based on Hooke’s law
 \[F = -ky \]
 - \(F \)= force, \(k \)= constant, \(y \)= displacement distance
 - Change in energy related to \(F \)

\[
\begin{align*}
\text{dE} &= -F\text{dy} \\
\text{dE} &= ky\text{dy} \\
\int_0^y \text{dE} &= k \int_0^y y\text{dy} \\
E &= \frac{1}{2}ky^2
\end{align*}
\]
Theory

- Harmonic oscillator derived
 \[E = \frac{1}{2} ky^2 \]

- Vibrational Frequency
 - F = ma
 - a = d²y/dt²
 - md²y/dt² = -ky
 - Substitute
 \[y = A\cos2\pi\nu_m t \]
 - \(\nu_m = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \)
 - m goes to reduced mass
 \[\mu = \frac{m_1 m_2}{m_1 + m_2} \]
Theory

- **Quantum treatment**
 - \(h \) is Planck constant
 - \(\nu \) is vibrational quantum number
 - Integer \(\geq 0 \)

\[
E = \left(\nu + \frac{1}{2} \right) \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} = (\nu + \frac{1}{2}) h \nu_m
\]

\[
E_0 = \left(\frac{1}{2} \right) h \nu_m, \quad E_1 = \left(\frac{3}{2} \right) h \nu_m, \quad \Delta E = h \nu_m = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}
\]

- **Solve for \(\nu \)**
 \[
 \nu = \nu_m = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}
 \]

- **Express in wavenumbers**
 - In cm\(^{-1}\), \(k \) in N/m, \(c \) in m/s, \(\mu \) in kg
 - \(K \) 3-8E2 for single bonds
 - 1e3 double, 1.5e3 triple
Theory

• Calculate stretching frequency of C=O
 ➤ Calculate mass in kg
 ➤ $m_c = 2e-26 \text{ kg}$
 ➤ $m_o = 2.7e-26 \text{ kg}$
 ➤ $\mu = 2.7 \times 2 \times 1e-26/(2.7+2) = 1.1E-26 \text{ kg}$

 \[\bar{\nu} = 5.3E - 12 \sqrt{\frac{1E3}{1.1E - 26}} = 1.6E3 \text{ cm}^{-1} \]

 ➤ Experimental value 1600 cm$^{-1}$ to 1800 cm$^{-1}$

• Actual system is anharmonic
 ➤ Selection rules $\Delta \nu \pm 2$ and 3 are observed
Theory

- Electron repulsion
- Bond breaking
- Vibrational modes
 - Depends upon number of atoms and degrees of freedom
 - 3N total
 - N number to atoms
- Constraints due to
 - Translational and rotational motion of molecule
 - Motion of atoms relative to each other
 - Non linear 3N-6
 - Linear 3N-5
- CO₂, 4 modes
 - 2 bend, symmetric stretch, asymmetric stretch
- H₂O, 3 modes
- SF₆, 15 modes

\[\nu_1 \, (3652 \, \text{cm}^{-1}) \]
\[\nu_2 \, (1595 \, \text{cm}^{-1}) \]
\[\nu_3 \, (3756 \, \text{cm}^{-1}) \]
Raman Theory

- **Excitation**
 - From ground or 1st vibrationally excited state
 - Population of excited state from Boltzmann’s equation
 * Molecule populates virtual states with energy from photon
 * Can be effected by temperature
 - Elastic scattering is Rayleigh
 - Energy scattered=energy incident
 - Energy difference due to Δ ground and 1st excited state
 - $h\nu-\Delta E$ is Stokes scattering
 - $H\nu+\Delta E$ is anti-Stokes scattering
Theory

- 3 types of scattered radiation
 - **Stokes**
 - Lower energy than Anti-Stokes
 * Named from fluorescence behavior
 - More intense
 - Used for Raman measurements
 - **Anti-Stokes**
 - No fluorescence interference
 - **Rayleigh**
 - Most intense
 - Same as incident radiation

- Shift patterns independent of incident radiation wavelength
Figure 18-2 Origin of Rayleigh and Raman scattering.
Theory

- Variation in polarizability of bond with length
- Electric field (E) due to excitation frequency with E_0
 \[E = E_0 \cos(2\pi \nu_{ext} t) \]
- Dipole moment (m) based on polarizability of bond (α)
 \[m = \alpha E = \alpha E_0 \cos(2\pi \nu_{ext} t) \]
- For Raman activity α must vary with distance along bond
 \[\alpha = \alpha_0 + (r - r_{eq}) \left(\frac{\partial \alpha}{\partial r} \right) \]

\(\alpha_0 \) is polarizability at \(r_{eq} \)

\[r - r_{eq} = r_{max} \cos(2\pi \nu v t) \]
Theory

\[m = \alpha_0 E_0 \cos(2\pi \nu_{ex} t) + \frac{E_0}{2} r_m \left(\frac{\partial \alpha}{\partial r} \right) \cos(2\pi (\nu_{ex} - \nu_\nu) t) + \]

\[\frac{E_0}{2} r_m \left(\frac{\partial \alpha}{\partial r} \right) \cos(2\pi (\nu_{ex} + \nu_\nu) t) \]

- Equation has Rayleigh, Stokes, and Anti-Stokes component
- Complementary to IR absorbance
 - Overlap not complete
Figure 18-3 Comparison of Raman and infrared spectra. (Courtesy Perkin-Elmer Corp., Norwalk, CT.)
Vibrational spectroscopy and group

• Molecules with inversion cannot be both IR and Raman active
 ➡️ For CO$_2$, symmetric stretch is IR inactive
 ➩ No net change of dipole
 ➩ Raman active

• A vibrational mode is IR active if it is symmetric with electric dipole vector
 ➡️ Causes change in dipole

• Mode is Raman active if it has component of molecular polarizability
Vibrational spectroscopy

- Consider cis (C_{2v}) and trans (D_{2h}) $\text{PdCl}_2(\text{NH}_3)_2$
 - Both have Pd-Cl stretch
 - For C_{2v}, all 1 is symmetric
 - A_1
 - Asymmetric mode
 - C_2 and σ_v are -1
 - B_2 group
- Same information can be used to assign symmetry
Symmetry and vibration

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C₂</th>
<th>σ_v (xz)</th>
<th>σ_v (yz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A₂</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B₁</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B₂</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>z</th>
<th>x², y², z²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R_z</td>
<td>xy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, R_y</td>
<td>xz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y, Rₓ</td>
<td>yz</td>
</tr>
</tbody>
</table>

- a₁ vibration generates a changing dipole moment in the z-direction
- b₁ vibration generates a changing dipole moment in the x-direction
- b₂ vibration generates a changing dipole moment in the y-direction
- a₂ vibration does not generate a changing dipole moment in any direction (no ‘x’, ‘y’ or ‘z’ in the a₂ row).
- **Thus, a₁, b₁ and b₂ vibrations give rise to changing dipole moments and are IR active**
- However, a₂ vibrations do not give rise to changing dipole moments and are IR inactive
Symmetry and vibration

• Which bonds are IR active in CCl$_4$?
 ➢ Symmetry is T$_d$
 ➢ From table, which bonds are dipole active in x, y, or z
 ➢ t$_2$ is active in x, y, and z
 ➢ What do these bonds look like?
 ➢ xz, yz, xy, x2, y2, z2 are Raman active
 ➢ From table, a$_1$ and t$_2$ are Raman active