• Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3
• Energetics
• Decay Types
• Transition Probabilities
• Internal Conversion
• Angular Correlations
• Moessbauer spectroscopy

• Emission of photon during deexcitation of the nucleus
 ▪ Wide range of energies
 ▪ Different % yields

• Isomers
 ▪ Two different nuclear configurations for same isotope
 ▪ Different total angular momenta and energy differences
 → long-lived nuclear states are called isomeric states
 * gamma ray decay is called isomeric transition (IT)

• Gamma decay energy range from few keV to many MeV
Gamma decay example: 152Eu

- Many gamma transitions from decay of 152Eu
 - Different decay modes of isotope
 - EC and β^-
- What gamma data provides % yield
 - From chart of the nuclides, gamma energies at 121.8 keV, 1408 keV, and 344.3 keV
Gamma Data

- Table of the isotope data
 - % yields and transitions
 - 121.8 keV, 1408 keV, and 344.3 keV
Gamma Data

$\gamma^{(152}\text{Sm})$ from ^{152}Eu (13.542 y) EC+β^+ decay

< for $l\gamma$% multiply by 0.020879>

121.8 keV, 1408 keV, and 344.3 keV
Gamma Data

121.8 keV, 1408 keV, and 344.3 keV

<table>
<thead>
<tr>
<th>$E_γ$ (keV)</th>
<th>$I_γ$ (%)</th>
<th>Decay mode</th>
<th>Half life</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.598 15</td>
<td>0.29 3</td>
<td>γ</td>
<td>96 m l</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>18.265 7</td>
<td>0.26 21</td>
<td>γ</td>
<td>96 m l</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>39.15 10</td>
<td></td>
<td>γ</td>
<td>96 m l</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>77.2583 6</td>
<td>0.189 5</td>
<td>γ</td>
<td>96 m l</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>89.8492 7</td>
<td>0.70 7</td>
<td>γ</td>
<td>96 m l</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>117.87 17</td>
<td>0.0168 17</td>
<td>β⁻</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>121.781</td>
<td>7.00 21</td>
<td>e+β⁺</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>121.781 73</td>
<td>0.28 6</td>
<td>e+β⁺</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>340.23</td>
<td>0.0050 18</td>
<td>e+β⁺</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>340.30 1</td>
<td>0.036 3</td>
<td>e+β⁺</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>344.278</td>
<td>2.38 3</td>
<td>β⁻</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>344.285 12</td>
<td>26.5 4</td>
<td>β⁻</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1389.00 1</td>
<td>0.748 23</td>
<td>e+β⁺</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1390.36 16</td>
<td>0.0048 8</td>
<td>e+β⁺</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1406.85</td>
<td>0.0007 4</td>
<td>e+β⁺</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1408.006 3</td>
<td>21.005 24</td>
<td>e+β⁺</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1411.70 3</td>
<td>0.0440 7</td>
<td>β⁻</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1420 1</td>
<td>0.0006 4</td>
<td>e+β⁺</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1457.643 11</td>
<td>0.502 5</td>
<td>e+β⁺</td>
<td>13.537 y 6</td>
<td>152m² Eu</td>
</tr>
<tr>
<td>1460.64 13</td>
<td>0.0016 4</td>
<td>β⁻</td>
<td>9.3116 h 13</td>
<td>152m² Eu</td>
</tr>
</tbody>
</table>

- **Search for % yield for specific isotope**
 - http://nucleardata.nuclear.lu.se/toi/
 → Enter element and isotope

- **Isotope browser for android**
Nuclear Excited State Transitions

• De-excitation of excited states
 ▪ α- and β-decay processes leave product nucleus in either ground state or excited state

• De-excitation can include
 ▪ Emission of electromagnetic radiation (γ radiation)
 ▪ newly created electron and positron (higher energy)
 \rightarrow Excited stated greater than 1.02 MeV
 ▪ Internal conversion from interaction between nucleus and extranuclear electrons leading to emission of atomic electron
 \rightarrow kinetic energy equal to difference between energy of nuclear transition involved and binding energy of electron
γ Transitions

- **Pair production**
 - Exceeds 1.02 MeV
 - Emitted with kinetic energies that total excitation energy minus 1.02 MeV
 - Uncommon mode

- **Gamma decay characterized by a change in energy without change in Z and A**
 - $E = h\nu$
 - Majority of γ transitions have very short lifetimes, 1E-12 seconds
 - Table of the Isotopes provide data
 - Longer lived states are metastable

- γ transitions used for determining nuclear energy levels and decay schemes
Energetics

• Recoil from gamma decay
 ▪ Energy of excited state must equal
 → Photon energy, and recoil
 * $M\cdot c^2 = M c^2 + E_\gamma + T_r$
 ▪ Momentum same for recoil and photon

• If $E_\gamma = 2$ MeV, and $A=50$
 ▪ recoil energy is about 40 eV
→ Use 931.5 MeV/AMU

• Important for Moessbauer spectroscopy (page 19)
• Find recoil from 15.1 MeV photon from ^{12}C

$$T_r = \frac{E_\gamma^2}{2M} = \frac{15.1^2}{2 \times 12 \times 931.5} = 1.02E - 2\text{MeV} = 10.2\text{keV}$$
Multipole Radiation & Selection Rules

- Since γ radiation arises from electromagnetic effects, it can be thought of as changes in the charge and current distributions in nuclei
 - Charge distributions resulting electric moments
 - Current distributions yield magnetic moments
- Gamma decay can be classified as magnetic (M) or electric (E)
 - E and M multipole radiations differ in parity properties
- Transition probabilities decrease rapidly with increasing angular-momentum changes
 - as in β-decay
Angular momentum from decay
- \(l=1,2,3,4 \)
- \(2^l \)-pole (dipole, quadrupole, octupole...)

Shorthand notation for electric (or magnetic) \(2^l \)-pole radiation
- \(E_l \) or \(M_l \)
 \(\rightarrow \) \(E_2 \) is electric quadrupole

Determine multipole of decay
- \(I_i^+ I_f \geq 1 \geq |I_i-I_f| \), where \(I_i \) is initial spin state and \(I_f \) is final spin state
 - Initial and final state have same parity
 - allowed transitions are:
 - electric multipoles of even \(l \)
 - magnetic multipoles of odd \(l \)
 - If initial and final state different parity
 - electric multipoles of odd \(l \)
 - magnetic multipoles of even \(l \)

Example:
- Transition is between a 4+ and a 2+ state
 - \(l \) between 6 and 2
 - \(4^+2 \) to \(4^-2 \)
 - Same parity, both +
 - \(E \) even, \(M \) odd
 - \(E_2, M_3, E_4, M_5, E_6 \) transitions are allowed
 - Generally lowest multipole observed
 - Expect \(E_2 \) as the main transition

- 137Cs example
 - \(11/2^- \) to \(3/2^+ \)
 - \(11/2+3/2 = 7 \)
 - \(11/2-3/2 = 4 \)
 - Different parity between states
 - \(E \) odd, \(M \) even
 - \(M_4, E_5, M_6, E_7 \)
Isomeric Transitions

- Isomeric transition (IT) is a γ decay from an isomeric state

- Transition probability or partial decay constant for γ emission
 \[\lambda_\gamma \propto E^{2l}A^{2l/3} \quad (l \text{ not } 1) \]

- For given spin change, half lives decrease rapidly with increasing A and more rapidly with increasing E

- Weisskopf single particle model
 \- Model predicts low-lying states of widely differing spins in certain regions of neutron and proton numbers
 \- Numbers preceding shell closures at N or Z values of 50, 82, 126
 \- Coincide with “islands of isomerism”

 * Large number of isomeric states near magic numbers

- Predictions strong for M4 isomers
 - E2 isomers 100 faster than predicted
 \[\rightarrow \text{Variations in nuclear shape} \]

Table 3-4 Partial Half Lives for Gamma Transitions Calculated on the Single-Particle Modela

<table>
<thead>
<tr>
<th>Transition Type</th>
<th>Partial Half Life t_γ (s)</th>
<th>Illustrative t_γ Values (s) for $A = 125$, $E = 1$ MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E1$</td>
<td>5.7×10^{-15} $E^{-3}A^{-2/3}$</td>
<td>2×10^{-15}</td>
</tr>
<tr>
<td>$E2$</td>
<td>6.7×10^{-9} $E^{-5}A^{-4/3}$</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>$E3$</td>
<td>1.2×10^{-2} $E^{-7}A^{-2}$</td>
<td>8</td>
</tr>
<tr>
<td>$E4$</td>
<td>3.4×10^{-6} $E^{-9}A^{-8/3}$</td>
<td>9×10^{7}</td>
</tr>
<tr>
<td>$E5$</td>
<td>1.3×10^{11} $E^{-11}A^{-10/3}$</td>
<td>1×10^{15}</td>
</tr>
<tr>
<td>$M1$</td>
<td>2.2×10^{-14} E^{-3}</td>
<td>2×10^{-11}</td>
</tr>
<tr>
<td>$M2$</td>
<td>2.6×10^{-8} $E^{-5}A^{-2/3}$</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>$M3$</td>
<td>4.9×10^{-2} $E^{-7}A^{-4/3}$</td>
<td>8×10^{2}</td>
</tr>
<tr>
<td>$M4$</td>
<td>1.3×10^{4} $E^{-9}A^{-2}$</td>
<td>8×10^{9}</td>
</tr>
<tr>
<td>$M5$</td>
<td>5.0×10^{11} $E^{-11}A^{-8/3}$</td>
<td>1×10^{17}</td>
</tr>
</tbody>
</table>

a The energies E are expressed in MeV. The nuclear radius parameter r_0 has been taken as 1.3 fm. Note that t_γ is the partial half life for γ emission only; the occurrence of internal conversion will always shorten the measured half life.
Non-photon emission for de-excitation

- 0 → 0 transitions cannot take place by photon emission
 - Photon has spin and therefore must remove at least one unit of angular momentum

- If no change in parity in 0 → 0 transition de-excitation occurs by other means
 - emission of an internal-conversion electron
 \[\rightarrow ^{72}\text{Ge}, ^{214}\text{Po} \]
 - simultaneous emission of an electron-positron pair (\(\Delta E > 1.02\) MeV)
 \[\rightarrow ^{16}\text{O}, ^{42}\text{Ca} \]

- Transitions between two I=0 states of opposite parity cannot take place by any first-order process
 - requires simultaneous emission of two \(\gamma\) quanta or two conversion electrons
Internal Conversion Coefficients

• Excited nucleus ejects atomic electron
 ▪ Discrete energy emission, only one particle
 ▪ Generally k shell electrons
• Interaction between nucleus and extranuclear electrons
 ▪ emission of electron with kinetic energy equal to difference between energy of nuclear transition and electron binding energy
• Internal conversion favored when:
 ▪ energy gap between nuclear levels is small
 ▪ \(0^+ \rightarrow 0^+\) transitions
• Internal conversion coefficient α
 - ratio of rate of internal conversion process to rate of γ emission
 * ranges from zero to infinity
 * coefficients for any shell generally increase with decreasing energy, increasing ΔI, and increasing Z

• Internal conversion electrons show a line spectrum
 - correspond to γ-transition energy minus binding energies of electron shells in which conversion occurs
 - difference in energy between successive lines are used to determine Z
Internal conversion spectrum

- α_K / α_L ratios can be used to characterize multipole order
 - Determine ΔI and $\Delta \Pi$
 - Compare to table on previous page
- If Z of x-ray-emitting species known, it can be determined whether it decays by EC or IT
 - X-rays generated from daughter isotope
 - For EC, x-rays will be of $Z-1$
 - IT x-rays from Z
- Specific lines generated from nuclear transition
 - Overlaid on beta spectrum
 - Can determine specific peaks and electron binding energies

Binding energies for 203Tl (keV)
- K 85.529
- L_I 15.347
- L_{II} 14.698
- L_{III} 12.657
- M 3.704
Angular Correlations of Gamma Decay

• Assumes γ rays have no track of multipole interaction from production
 ▪ In some cases multipole fields give rise to angular distributions of emitted radiation with respect to nuclear-spin direction of emitting nucleus

• Generally not observed during gamma decay
 ▪ ordinarily samples contain randomly oriented nuclei
 ▪ Observed angular distribution of γ rays is isotropic due to random orientation
 → Would be remove if nuclei aligned
Angular correlation

- If nuclear spins can be aligned in one direction, angular distribution of emitted γ-ray intensity would depend on initial nuclear spin and multipole character of radiation
 - Align nuclei in magnetic or electric field at near 0 K
 - Observe a γ ray in coincidence with a preceding radiation
 - \rightarrow Alpha, beta, or gamma

- Coincidence experiment
 - Angle θ between two sample-detector axes is varied, coincidence rate will vary as a function of θ

Correlation function:

$$W(\theta) = 1 + a_2 \cos^2 \theta + a_4 \cos^4 \theta$$

$$A = \frac{W(180^\circ) - W(90^\circ)}{W(90^\circ)}$$

Where $A = a_2 + a_4$ (fits)
Angular Correlations

- Correlate gamma emission with preceding radiation
 - Need very short gamma lifetime
 - Measure coincidence as function of θ
- Schematic diagram of angular correlations
 - $\gamma_1\gamma_2$ cascade, Z axis defined by γ_1
 - Requires time and spatial correlated detectors
CHEM 312: Lecture 6 Gamma Decay

- Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3
- Energetics
- Decay Types
- Transition Probabilities
- Internal Conversion
- Angular Correlations
- Moessbauer spectroscopy

- Emission of photon during deexcitation of the nucleus
 - Wide range of energies
 - Different % yields
- Isomers
 - Two different nuclear configurations for same isotope
 - Different total angular momenta and energy differences
 → Long-lived nuclear states are called isomeric states
 * Gamma ray decay is called isomeric transition (IT)
- Gamma decay energy range from few keV to many MeV
CHEM 312: Lecture 6 Gamma Decay

- Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3
- Energetics
- Decay Types
- Transition Probabilities
- Internal Conversion
- Angular Correlations
- Moessbauer spectroscopy

- Emission of photon during deexcitation of the nucleus
 - Wide range of energies
 - Different % yields
- Isomers
 - Two different nuclear configurations for same isotope
 - Different total angular momenta and energy differences
 - long-lived nuclear states are called isomeric states
 - * gamma ray decay is called isomeric transition (IT)
- Gamma decay energy range from few keV to many MeV
Mössbauer Spectroscopy

- Uses of gamma emission and absorption to determine chemical information

- Principles
- Conditions
- Spectra

Principles

- Nuclear transitions
 - emission and absorption of gamma rays
 → sometimes called nuclear gamma resonance spectroscopy
- Only suitable source are isotopes
 - Emission from isotope is essentially monochromatic
 - Energy tuning performed by Doppler effect
 → Vibration of source and absorber

 * spectra recorded in mm/s (1E-12 of emission)
Recoil

- Recoil converted to vibrational energy
- Associated recoil energy of emitter
 - With gamma decay E is large enough to have a measurable effect
- Molecules in gas or liquid cannot reabsorb photon
- In practice lattice vibrational modes may be excited during absorption
 - Recoil can be observed in solid
 - Entire solid recoils (recoil free)
- Emitting nuclei in chemical system
 - Thermal equilibrium, moving source
 - Doppler shift of emitted photon
 \rightarrow Slight variation of photon energy with vibration

$$E_r = \frac{\rho^2}{2M} = \frac{E^2}{2M}$$

$$E_r(eV) = \frac{537E^2}{2M}$$

E in Mev

$$\Delta E = \frac{V}{c} E \cos \vartheta$$

ϑ is angle between direction of motion of nucleus and emitted photon, v is nucleus velocity
Recoil Free Fraction

- ϑ can vary from -1 to 1, so distribution is $E_T - E_R$
 - E_T is gamma transition energy from excited to ground state
 - E_R is recoil energy
 - Distribution around 0.1 eV at room temp

- Some chemical energy goes into photon, and some recoil energy goes into lattice phonon
- Heisenberg uncertainty implies distribution of energy from finite half-life
 - Γ (in eV) = $4.55E-16/t_{1/2}$ (sec)
 - Γ level width, which is finite due uncertainty principle

- What Mössbauer did
 - Total recoil in two parts, kinetic and vibrational
 - If emitter and absorber are part of lattice, vibrations are quantized
 - Based on phonon
 - Recoil energy transfer only in correct quanta
Recoil Free Fraction

- If recoil energy is smaller than quantized vibration of lattice whole lattice vibrates
- Mass is now mass of lattice
 - v is small as is recoil kinetic energy
- E, E_T and recoil energy goes into lattice phonon system
 - Lattice system is quantized, so it is possible to find a state of system unchanged after emission
Recoil free fraction

- Energy goes into lattice phonons
- For $E > 150$ keV nearly all events vibrate lattice
 - Gives rise to Mössbauer spectra
 - \rightarrow recoil-free fraction
 - Portion of radiation which is recoil free
- Vibration of lattice reduced with reduced temperature
- Recoil-free fraction increases with decreasing temperature
- Temperature range from 100 to 1000 K
- For gamma level half-lives greater than $1E-11$ seconds, natural width around $1E-5$ eV
 - For gamma decay of 100 keV
 - \rightarrow Doppler shift of $1E-5$ eV is at a velocity of 3 cm/s
Isomeric or Chemical Shift

- Volume of nucleus in excited state is different from ground state
 - Probability of electron orbitals found in nucleus is different
 → Can be used to evaluate chemical state
- Difference appears as a difference in total electron binding state and contributes to transition energy
 - $E_T = \Delta E(nucl) + \Delta E(elect)$ [binding energies]
 - Consider an emitting nucleus (excited) and absorber (ground) in different chemical states
 - Difference in $\Delta E(elect)$ and therefore E_T
 - Change is chemical shift

$$\Delta E(elect) = \frac{2}{5} \pi Z e^2 (\bar{r}_{ex}^2 - \bar{r}_{gr}^2) \left[|\psi_{ex}(0)|^2 - |\psi_{gr}(0)|^2 \right]$$
Magnetic Dipole Splitting

- magnetic moment will add to transition energy
 - \[E_T = \Delta E(\text{nucl}) + \Delta E(\text{elect}) + \Delta E(\text{mag}) \]
- Change in magnetic moment will effect shift
- Split also occurs \((2I+1)\) values
- around 1cm/s

Electric Quadrupole Splitting

- inhomogeneous magnetic field
 - \[E_T = \Delta E(\text{nucl}) + \Delta E(\text{elect}) + \Delta E(\text{mag}) + \Delta E(\text{quad}) \]
Technique

- Intensity of photon from emitter is detected
- Velocity of emitter and absorber recorded
 - important to know these values
- May be cooled and place in magnetic field
- Used in
 - amorphous materials
 - catalysts
 - soil
 - coal
 - sediments
 - electron exchange
Mössbauer Devise

First Mössbauer Spectrum Recorded on Martian Surface
Gusev Crater, January 17, 2004 (3h25min)

Fe^{2+}/Fe_{total} \sim 0.6
237Np Moessbauer spectroscopy

- 68 ns excited state lifetime
- Isomer shift suitable for analysis of chemical bonds
- Can record radiation spectrum from absorber
 - 60 keV from 241Am
- Shift correlated with oxidation state and number of 5f electrons present

Fig. 3. 237Np Mössbauer spectra of NpFeGa$_5$ at 10 K.
Topic Review

• Trends in gamma decay
 ▪ How does it come about, how is it different from alpha and beta
• Energetics of gamma decay
• Decay Types
 ▪ Photon emission, IC, pair production
• E and M transitions
 ▪ Probabilities, modes, and how to define
• Angular Correlations
 ▪ How are they measured and what do they inform about nucleus
• Moessbauer spectroscopy
Questions

- 195Pt has a ground state spin and parity of $\frac{1}{2}^-$, with excited states at 99 keV (3/2-) and 130 keV (5/2-). Does the 5/2 level decay primarily to the 3/2- level or to the $\frac{1}{2}$- level? Why? What is the transition multipolarity?
- What is the spin of a photon?
- What type of gamma decay is expected from a 0+ to 0+ transition?
- Classify the most likely multipolarity for the γ-ray decay of 60mCo.
- Describe Mössbauer spectroscopy
- Why do angular correlations arise in the nucleus? How are they measured

- emission of an internal-conversion electron
- simultaneous emission of an electron-positron pair ($\Delta E > 1.02$ MeV)

195Ir 195Pt

$Q_{\beta^-} = 1120.1$ keV

2.5 h half life

129.777 0.67 ns

98.882 0.170 ns

13% 7.0 $1/2^-$

57% 6.2 $5/2^-$

26% 6.6 $3/2^-$

1% 4.0 $7/2^-$

60mCo

$Q_{\beta^-} = 52.1$ keV

$Q_{\gamma} = 20.7$ keV

2^+ to 5^+: 3 to 7, Same parity E even $M3, E4, M5, E6, M7$

60mCo

$Q_{\gamma} = 20.7$ keV

2^+ to 5^+: 3 to 7, Same parity E even $M3, E4, M5, E6, M7$

2+ to 5+: 3 to 7, Same parity E even $M3, E4, M5, E6, M7$

60Co

$Q_{\beta^-} = 52.1$ keV

$Q_{\gamma} = 20.7$ keV

2^+ to 5^+: 3 to 7, Same parity E even $M3, E4, M5, E6, M7$

60Co

$Q_{\beta^-} = 52.1$ keV

$Q_{\gamma} = 20.7$ keV

2^+ to 5^+: 3 to 7, Same parity E even $M3, E4, M5, E6, M7$
Questions

- Determine gamma decay yields
 - 95Zr
 - 241Am
 - 60Co

http://nucleardata.nuclear.lu.se/toi/
Lund LBNL data site, nuclide search
Questions

• What are metastable isotopes?

• Provide the half-life of 99mTc

• Why do isomeric states exist?

• Where do isomers exist?

Long-lived nuclear states
Gamma ray decay isomeric transition (IT)

Large spin changes

Large number of isomeric states near magic numbers
• Comment on blog
• Provide response to PDF quiz 6